精英家教网 > 高中数学 > 题目详情
已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=
 
考点:交集及其运算
专题:集合
分析:利用交集的定义求解.
解答: 解:∵集合A={-2,0,2},B={x|x2-x-2=0}={-1,2},
∴A∩B={2}.
故答案为:{2}.
点评:本题考查交集的求法,是基础题,解题时要注意交集性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)求焦点在x轴上,焦距等于4,并且经过点P(3,-2
6
)
的椭圆的标准方程;
(2)求焦点在y轴上,焦距是10,虚轴长是8的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A=(2,-1,3),B=(-1,4,-2),则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lg(x-5)的定义域为M,函数y=lg(x-5)+lg(12-x)的定义域为N,则(  )
A、M∪N=RB、M=N
C、M?ND、M⊆N

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)的右顶点为A2,右焦点为F2,离心率为
5
4
,抛物线C2:y2=2px(p>0)上一点P(3,m)到其焦点F的距离为7,且F与A2重合.
(1)求C1,C2的方程;
(2)求C1的渐近线与C2的准线所围成的三角形的面积;
(3)设过F2倾斜角为135°的直线交C2于A,B两点,求AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

把下面求2-22+23-24+…-210的程序语言补充完整.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈(0,+∞),x+
4
x
≥4”的否定为(  )
A、?x∈(0,+∞),x+
4
x
≤4
B、?x∈(0,+∞),x+
4
x
<4
C、?x∈(0,+∞),x+
4
x
≤4
D、?x∈(0,+∞),x+
4
x
<4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O为AD中点,M是棱PC上的点,AD=2BC.
(1)求证:平面POB⊥平面PAD;
(2)若点M是棱PC的中点,求证:PA∥平面BMO.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且3an-1=2Sn,等差数列{bn}的前n项和为Tn,且b5-b3=2,T4=10
(1)求{an}、{bn}的通项公式;
(2)若
b1
a1
-
b2
a2
+
b3
a3
-…-
b2n
a2n
<c恒成立,求整数c的最小值.

查看答案和解析>>

同步练习册答案