精英家教网 > 高中数学 > 题目详情

己知函数f(x)=ex,xR.

(1)若直线y=kx+1与f(x)的反函数图象相切,求实数k的值;

(2)设x﹥0,讨论曲线y=f(x)与曲线y=mx2(m﹥0)公共点的个数;

(3)设,比较的大小并说明理由。

 

【答案】

(1);(2)当m时,有0个公共点;当m=,有1个公共点;当m有2个公共点;(3).

【解析】

试题分析:(1)f (x)的反函数. 直线y=kx+1恒过点P(0,1),该题即为过某点与曲线相切的问题,这类题一定要先设出切点的坐标,然后求导便可得方程组,解方程组即可得k的值.

 (2)曲线y=f(x)与曲线 的公共点个数即方程 根的个数. 而这个方程可化为

,令,结合的图象即可知道取不同值时,方程的根的个数.

(3) 比较两个式子的大小的一般方法是用比较法,即作差,变形,判断符号.

 

 

结合这个式子的特征可看出,我们可研究函数的函数值的符号,而用导数即可解决.

试题解析:(1)f(x)的反函数.设直线y=kx+1与相切于点,则.所以                       4分

(2)当x>0,m>0时,曲线y=f(x)与曲线的公共点个数即方程根的个数. 5分

,令

上单调递减,这时;  上单调递增,这时;所以的最小值.      6分

所以对曲线y=f(x)与曲线公共点的个数,讨论如下:

当m时,有0个公共点;

当m=,有1个公共点;

当m有2个公共点;                  8分

(3)设 

           9分

,则

的导函数,所以上单调递增,且,因此上单调递增,而,所以在.   12分

时,

 

所以当时,                     14分

考点:1、导数的应用;2、方程的根;3、比较大小.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•绵阳一模)己知函数f(x)=
a
x
-1(其中a是不为0的实数),g(x)=lnx,设F(x)=f(x)+g(x).
(Ⅰ)判断函数F(x)在(0,3]上的单调性;
(Ⅱ)已知s,t为正实数,求证:ttex≥stet(其中e为自然对数的底数);
(Ⅲ)是否存在实数m,使得函数y=f(
2a
x2+1
)+2m的图象与函数y=g(x2+1)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武清区一模)己知函数f(x)=-lnx-
ax
,a∈R

(1)当a>0时,求函数f(x)的单调区间;
(2)求函数f(x)在区间[1,e]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山一模)己知函数f(x)=(mx+n)e-x在x=1处取得极值e-1
(I )求函数f(x)的解析式,并求f(x)的单调区间;
(II )当.x∈(a,+∞)时,f(2x-a)+f(a)>2f(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=
1
2
(1+x)2-ln(1+x)

(1)求f(x)的单调区间;
(2)若x∈[
1
e
-1,e-1]
时,f(x)<m恒成立,求m的取值范围;
(3)若设函数g(x)=
1
2
x2+
1
2
x+a
,若g(x)的图象与f(x)的图象在区间[0,2]上有两个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知函数f(x)=
1
2
(1+x)2-ln(1+x)

(1)求f(x)的单调区间;
(2)若x∈[
1
e
-1,e-1]
时,f(x)<m恒成立,求m的取值范围;
(3)若设函数g(x)=
1
2
x2+
1
2
x+a
,若g(x)的图象与f(x)的图象在区间[0,2]上有两个交点,求a的取值范围.

查看答案和解析>>

同步练习册答案