精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-
1
2
ax2-2x.
(1)若a=3,求f(x)的增区间;
(2)若a<0,且函数f(x)存在单调递减区间,求a的取值范围;
(3)若a=-
1
2
且关于x的方程f(x)=-
1
2
x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:综合题,导数的综合应用
分析:(1)在定义域内解不等式f′(x)>0即可;
(2)由函数f(x)存在单调递减区间,知f′(x)<0在(0,+∞)上有解,分离参数化为函数最值即可;
(3)f(x)=-
1
2
x+b化为b=lnx+
1
4
x2
-
3
2
x,令g(x)=lnx+
1
4
x2
-
3
2
x(1≤x≤4),利用导数求得g(x)的最值,借助图象可得结果;
解答: 解:(1)f(x)的定义域是(0,+∞),
a=3时,f′(x)=
1
x
-3x-2
=
-(3x-1)(x+1)
x

令f′(x)>0,得0<x<
1
3

∴函数f(x)的增区间是(0,
1
3
].
(2)f′(x)=
1
x
-ax-2

由函数f(x)存在单调递减区间,知f′(x)<0在(0,+∞)上有解,
1
x
-ax-2
<0,即a>
1
x2
-
2
x

1
x2
-
2
x
=(
1
x
-1)2
-1≥-1,
∴a>-1,又a<0,
∴-1<a<0.
(3)a=-
1
2
时,f(x)=lnx+
1
4
x2-2x,则f(x)=-
1
2
x+b即为b=lnx+
1
4
x2
-
3
2
x,
令g(x)=lnx+
1
4
x2
-
3
2
x(1≤x≤4),则g′(x)=
1
x
+
1
2
x-
3
2
=
(x-1)(x-2)
2x

当1<x<2时,g′(x)<0,g(x)递减;当2<x<4时,g′(x)>0,g(x)递增.
∴g(x)min=g(2)=ln2-2,
又g(1)=-
5
4
,g(4)=ln4-2,g(1)<g(4),
∴ln2-2<b≤-
5
4
,即实数b的取值范围是ln2-2<b≤-
5
4
点评:该题考查利用导数研究函数的单调性、最值,考查方程的根,考查函数与方程思想、数形结合思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(cos4x-sin4x,2sinx),
b
=(1,-cosx),函数f(x)=
2
a
b

(1)求函数f(x)的对称中心;
(2)作出函数f(x)在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sinA+sinC=2sinB,求证:tan
A
2
tan
C
2
=
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

一次掷两粒骰子,得到的点数为m和n,求关于x的方程x2+(m+n)x+4=0有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax+
1-a
x
-1(a∈R).
(1)当y=f(x)在点(2,f(2))处的切线方程是y=x+ln2时,求a的值.
(2)当y=f(x)的单调递增区间是(1,5)时,求a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-2x+1+alnx有两个极值点x1、x2,且x1<x2,则:
(1)求实数a的范围;
(Ⅱ)求f(x2)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A=
3a
0-1
,a∈R,若点P(2,-3)在矩阵A的变换下得到点P′(3,3).
(1)则求实数a的值;
(2)求矩阵A的特征值及其对应的特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面0.5米.风车圆周上一点A从最低点O开始,运动t秒后与地面的距离为h米.以O为原点,过点O的圆的切线为x轴,建立直角坐标系.
①假设O1O和O1A的夹角为θ,求θ关于t的关系式;
②当t=4秒时,求扇形OO1A的面积S OO1A
③求函数h=f(t)的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:|2x-1|>1;条件q:x2-(2a+1)x+a(a+1)<0,若?p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案