精英家教网 > 高中数学 > 题目详情

【题目】某奶茶店对某时间段的奶茶销售量及其价格进行调查,统计出售价元和销售量杯之间的一组数据如下表所示:

价格

5

5.5

6.5

7

销售量

12

10

6

4

通过分析,发现销售量对奶茶的价格具有线性相关关系.

(1)求销售量对奶茶的价格的回归直线方程;

(2)欲使销售量为13杯,则价格应定为多少?

【答案】(1)=﹣4x+32;(2)4.75元.

【解析】试题分析:(1)首先求出两组数据的平均数,利用最小二乘法得到线性回归方程的系数,写出线性回归方程;

(2)令-4x+32=13,可预测销销售量为13杯时的售价.

试题解析:(1).

=5×12+5.5×10+6.5×6+7×4=182.

=52+5.52+6.52+72=146.5,

.

∴销售量y对奶茶的价格x的回归直线方程为=﹣4x+32.

(2)令﹣4x+32=13,解得x=4.75.答:商品的价格定为4.75元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1中,底面ABCD为菱形,AA1⊥底面ABCD,E为B1D的中点.
(Ⅰ)证明:平面ACE⊥平面ABCD;
(Ⅱ)若二面角D﹣AE﹣C为60°,AA1=AB=1,求三棱锥C﹣AED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的圆心为 的圆心为N,一动圆与圆M内切,与圆N外切.
(1)求动圆圆心P的轨方迹方程;
(2)设A,B分别为曲线P与x轴的左右两个交点,过点 的直线 与曲线P交于C,D两点,若 ,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①若,则

已知,且的夹角为锐角,则实数 的取值范围是

③已知是平面上一定点,是平面上不共线的三个点,动点满足,则的轨迹一定通过的重心;

④在中,,边长分别为,则只有一解;

⑤如果ABC内接于半径为的圆,且

ABC的面积的最大值

其中正确的序号为_______________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),曲线C的极坐标方程是 以极点为原点,极轴为x轴正方向建立直角坐标系,点M(﹣1,0),直线l与曲线C交于A,B两点.
(1)写出直线l的极坐标方程与曲线C的普通方程;
(2)线段MA,MB长度分别记|MA|,|MB|,求|MA||MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在著名的汉诺塔问题中有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上:①每次只能移动一个金属片;②在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n),则f(6)=(
A.31
B.33
C.63
D.65

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=x﹣ln x﹣2.
(Ⅰ)求函数 f ( x) 的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在区间(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当有是实数解时,求实数的取值范围;

(2)若,对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各两张,让孩子从盒子里任取3张卡片,按卡片上的最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量X的分布列及数学期望;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率.

查看答案和解析>>

同步练习册答案