精英家教网 > 高中数学 > 题目详情

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)若不等式的解集非空,求的取值范围.

【答案】(1)(2)

【解析】分析:(1)求出的分段函数的形式,解不等式可分三类讨论即可解得不等式的解集;

(2)原式等价于存在,使成立,即

,求出的最大值即可得到的取值范围.

详解:(1)当时,,无解

时,

时,

综上所述的解集为 .

(2)原式等价于存在,使

成立,即

由(1)知

时,,其开口向下,对称轴为x=>-1,所以g(x)g(-1)=-8,

当-1<x<5,开口向下,对称轴x=,所以g(x)≤g()=-

当x5时,开口向下,对称轴x=<5,所以g(x)≤g(5)=-14,

综上所述,t的取值范围为(-∞,-].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】实数对满足不等式组则目标函数当且仅当时取最大值,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p与听课时间t之间的关系满足如图所示的曲线.当t(0,14]时,曲线是二次函数图象的一部分,当t[14,40]时,曲线是函数)图象的一部分.根据专家研究,当注意力指数p大于等于80时听课效果最佳.

(1)试求的函数关系式;

(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,,平面ABC外有一点,点P到角的两边ACBC的距离都等于,则PC与平面ABC所成角的正切值为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,,数列满足.

1)求数列中的前四项;

2)求证:数列是等差数列;

3)若,试判断数列是否有最小项,若有最小项,求出最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

1)写出图(1)表示的市场售价与时间的函数关系式;写出图(2)表示的种植成本与时间的函数关系式

2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,且对任意,有,且当时,

(Ⅰ)证明是奇函数;

(Ⅱ)证明上是减函数;

(III)若,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上函数的图象关于图象上点(1,0)对称,f(x)对任意的实数x都有f(3)=0,则函数y=f(x)在区间上的零点个数最少有(

A.2020B.1768C.1515D.1514

查看答案和解析>>

同步练习册答案