精英家教网 > 高中数学 > 题目详情
已知向量
a
=(x,-1)
b
=(2,y)
,其中x随机选自集合{-1,1,3},y随机选自集合{-2,2,6},
(Ⅰ)求
a
b
的概率;        
(Ⅱ)求
a
b
的概率.
考点:古典概型及其概率计算公式
专题:平面向量及应用,概率与统计
分析:列举出基本事件空间包含的基本事件个数:
(Ⅰ)由于
a
b
等价于
a
b
,即xy+2=0,即 xy=-2,满足xy=-2的(x,y)共有2个,由此求得
a
b
的概率.
(Ⅱ)由于
a
b
等价于
a
b
=0,即2x-y=0,即 y=2x,满足y=2x 的(x,y)共有3个,由此求得
a
b
的概率.
解答: 解:则基本事件空间包含的基本事件有:(-1,-2),(-1,2),(-1,6),
(1,-2),(1,2),(1,6),(3,-2),(3,2),(3,6),共9种.…(4分)
(Ⅰ)设“
a
b
”事件为A,则xy=-2.
事件A包含的基本事件有(-1,2),(1,-2)共2种.
a
b
的概率为P(A)=
2
9
.                          …(8分)
(Ⅱ)设“
a
b
”事件为B,则y=2x.
事件A包含的基本事件有(-1,-2),(1,2),(3,6)共3种.
a
b
的概率为P(B)=
3
9
=
1
3
.                  …(12分)
点评:本题主要考查古典概型及其概率计算公式的应用,两个向量平行和垂直的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知,AB为圆O的直径,CD为垂直AB的一条弦,垂足为E,弦AG交CD于F.
(1)求证:E、F、G、B四点共圆;
(2)若GF=2FA=4,求线段AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一组数据a1,a2,a3,…,an的平均数为
.
x
,标准差为s,则-2a1+3,-2a2+3,-2a3+3,…,-2an+3的平均数和标准差分别是(  )
A、
.
x
,2s
B、-2
.
x
+3,4s
C、-2
.
x
+3,-2s
D、-2
.
x
+3,2s

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙O:(x-3)2+(y+1)2=25的圆心为O,过点A(1,2)的直线l与⊙O相交于A,B两点,当点O到直线l的距离最大时,弦AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=x|x-a|+2x.
(1)若a=2,求函数f(x)在区间[0,3]上的最大值;
(2)若a>2,写出函数f(x)的单调区间(不必证明);
(3)若存在a∈[3,6],使得关于x的方程f(x)=t+2a有三个不相等的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log4(4x+1)-
x
2

(Ⅰ)判断f(x)的奇偶性,并说明理由;
(Ⅱ)若方程f(x)-m=0有解,求m的取值范围;
(Ⅲ)若函数g(x)=log4[1+2x+3x+…+(n-1)x-nxa],n≥2,n∈N,对任意x∈(-∞,1]有意义,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=f(x)图象向上平移一个单位长度,再向左平移
π
4
个单位长度,则所得图象对应的函数y=2cos2x,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公比为q的正项等比数列,不等式x2-a3x+a4≤0的解集是{x|a1≤x≤a2},则q=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示的程序框图,运行相应的程序,则程序运行后输出的结果为
 

查看答案和解析>>

同步练习册答案