精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知△ABC中,∠ACB=90°,SA⊥平面ABCADSC,求证:AD⊥平面SBC.

【答案】详见解析

【解析】试题分析:由线面垂直性质定理得SABC,再根据BCAC,利用线面垂直判定定理得BC⊥平面SAC,即得BCAD最后根据ADSC,利用线面垂直判定定理得结论

试题解析:∵∠ACB90°BCAC.又SA平面ABCSABCSAACABC平面SACBCAD.又SCADSCBCCAD平面SBC.

点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.

(1)证明线面、面面平行,需转化为证明线线平行.

(2)证明线面垂直,需转化为证明线线垂直.

(3)证明线线垂直,需转化为证明线面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点重合,且点到直线的距离为 的公共弦长为.

(1)求椭圆的方程及点的坐标;

(2)过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科技兴趣小组对昼夜温差的大小与小麦新品种发芽多少之间的关系进行了研究,记录了2016年12月1日至12月5日五天的昼夜温差与相应每天100颗种子的发芽得到了如下数据:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差

9

11

10

12

13

发芽数(颗)

21

34

26

36

40

现从这5组数据中任选两组,用余下的三组数据求回归直线方程,再对被选取的两组数据进行检验.

(Ⅰ)求选取的两组数据恰好是不相邻的两天的概率;

(Ⅱ)若选取的是12月1日和12月5日的两组数据,请根据余下的三组数据,求出的线性回归直线方程

(Ⅲ)若由线性回归直线方程得到的估计值与所选出的两组实际数据的误差均不超过两颗,则认为得到的回归直线方程是可靠的,试判断(Ⅱ)中得到的线性回归直线方程是否可靠.

附:在线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,P是正方形ABCD对角线的交点,GPB的中点.

(1)根据三视图,画出该几何体的直观图.

(2)在直观图中,①证明:PD∥平面AGC;

②证明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)全集U{2,4,-(a3)2},集合A{2a2a2},若UA{1},求实数a的值. (2)已知A{x|2axa3}B{x|x<1x>5},若AB,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了了解两班学生寒假期间观看《中国诗词大会》的时长,分别从这两个班中随机抽取5名学生进行调查,将他们观看的时长(单位:小时)作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)分别求出图中所给两组样本数据的平均值,并据此估计哪个班的学生平均观看的时间较长;

(2)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过定点

(1)若直线与圆相切,求直线的方程。

(2)若直线与圆相交于两点,且,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(-x2+x-1)ex,其中e是自然对数的底数.

(1)求曲线f(x)在点(1,f(1))处的切线;

(2)若方程f(x)=x3x2+m有3个不同的根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求方程的实数解;

)如果数列满足),是否存在实数,使得对所有的都成立?证明你的结论.

)在()的条件下,设数列的前项的和为,证明:

查看答案和解析>>

同步练习册答案