精英家教网 > 高中数学 > 题目详情

【题目】为正项数列的前项和,且.数列满足:.

1)求数列的通项公式;

2)设,求数列的前项和

3)设,问是否存在整数,使数列为递增数列?若存在求的值,若不存在说明理由.

【答案】(1) . (2) (3)存在,

【解析】

1)先由题意求出,再由时,,推出数列是以为公差的等差数列,求出的通项;根据,得到,推出数列是以为公比的等比数列,进而可求出数列的通项公式;

2)先由(1)得到,根据错位相减法,即可求出结果;

3)先由(1)得,假设存在,满足为递增数列,得到对任意恒成立,列出不等式,分别讨论为奇数,为偶数两种情况,即可求出结果.

1)当时,解得

时,由,及

相减得,即

解得(舍);即数列是以为公差的等差数列,

,所以数列是以为公比的等比数列,

,故,所以.

2)由(1)得.

所以

相减得

从而

3)由(1)得,若存在,满足为递增数列,

对任意恒成立,

为奇数时,由

为偶数时,由

,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道,且两边是两个关于走道对称的三角形().现考虑方便和绿地最大化原则,要求点与点均不重合,落在边上且不与端点重合,设.

(1)若,求此时公共绿地的面积;

(2)为方便小区居民的行走,设计时要求的长度最短,求此时绿地公共走道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过点的直线与抛物线相切,设第一象限的切点为.

(1)求点的坐标

(2)若过点的直线与抛物线相交于两点,圆是以线段为直径的圆过点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数.

I)若,求实数的取值范围;

II)当时,讨论方程上的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量(单位:焦耳)与地震里氏震级之间的关系为.

(1)已知地震等级划分为里氏,根据等级范围又分为三种类型,其中小于级的为小地震”,介于级到级之间的为有感地震”,大于级的为破坏性地震若某次地震释放能量约焦耳,试确定该次地震的类型;

(2)2008年汶川地震为里氏,2011年日本地震为里氏,:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍? ()

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )

A. 为真命题,则为真命题 B. 恒成立

C. 命题“”的否定是“ D. 命题“若”的逆否命题是“若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小电子产品2018年的价格为9/件,年销量为件,经销商计划在2019年将该电子产品的价格降为/件(其中),经调查,顾客的期望价格为5/件,经测算,该电子产品的价格下降后年销量新增加了件(其中常数.已知该电子产品的成本价格为4/.

1)写出该电子产品价格下降后,经销商的年收益与实际价格的函数关系式:(年收益=年销售收入-成本)

2)设,当实际价格最低定为多少时,仍然可以保证经销商2019年的收益比2018年至少增长20%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin.

(1)求A;

(2)若△ABC的面积S=c2,求sin C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,()的部分图像如图所示.

1)求函数的解析式及图像的对称轴方程;

2)把函数图像上点的横坐标扩大到原来的2倍(纵坐标不变),再向左平移个单位,得到函数的图象,求关于x的方程时所有的实数根之和.

查看答案和解析>>

同步练习册答案