精英家教网 > 高中数学 > 题目详情

已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数yf(x)在区间[-1,1]上有零点,求a的取值范围.

答案:
解析:

  解析1:函数在区间[-1,1]上有零点,即方程=0在[-1,1]上有解,

  a=0时,不符合题意,所以a≠0,方程f(x)=0在[-1,1]上有解<=>或a≥1.

  所以实数a的取值范围是或a≥1.

  解析2:a=0时,不符合题意,所以a≠0,又

  ∴=0在[-1,1]上有解,

  在[-1,1]上有解

  在[-1,1]上有解,问题转化为求函数[-1,1]上的值域;设t=3-2x,x∈[-1,1],则,t∈[1,5],

  设时,,此函数g(t)单调递减,时,>0,此函数g(t)单调递增,∴y的取值范围是,∴=0   在[-1,1]上有解ó


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=x2(x-a).
(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[0,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=
43
ax3+x2-(a+5)x
,如果函数y=f(x)在区间[-1,1]上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=2ax2+2x-3-a
(1)若f(x)≤0在R上恒成立,求a的取值范围.
(2)若函数y=f(x)在区间[-1,1]上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河西区二模)已知a是实数,函数f(x)=x3-(a+
32
)x2
+2ax+1
(Ⅰ)若f′(2)=4,求a的值及曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求f(x)在区间[1,4]上的最大值.

查看答案和解析>>

同步练习册答案