精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2-2x+4y-4=0;
(1)若直线l过P(-2,2)且与圆C相切,求直线l的方程.
(2)是否存在斜率为1直线l′,使直线l′被圆C截得弦AB,以AB为直径的圆经过原点O.若存在,求出直线l′的方程;若不存在,说明理由.
分析:(1)假设切线方程,利用直线与圆相切,由圆心到直线的距离等于半径解出k值,从而得到直线l的方程;
(2)假设所求直线存在,将条件以AB为直径的圆经过原点O,转化为OA⊥OB.通过联立方程可求.
解答:解:(1)圆C可化为:(x-1)2+(y+2)2=9?圆心:C(1,-2);半径:r=3
①当l斜率不存在时:l:x=-2,满足题意(2分)
②当l斜率存在时,设斜率为k,则:l:y-2=k(x+2)?kx-y+2k+2=0
则:d=
|k+2+2k+2|
k2+1
=3?k=-
7
24

故:l:7x+24y-34=0(3分)
综上之:直线l的方程:x=-2或7x+24y-34=0(1分)
(2)设直线l的方程为y=x+b,代入圆的方程x2+(x+b)2-2x+4(x+b)-4=0.即2x2+(2b+2)x+b2+4b-4=0.(*)以AB为直径的圆过原点O,则OA⊥OB.
设A(x1,y1),B(x2,y2),则x1x2+y1y2=0,即x1x2+(x1+b)(x2+b)=0.
∴2x1x2+b(x1+x2)+b2=0.
由(*)式得x1+x2=-b-1,x1x2=
b2+4b-4
2

∴b2+4b-4+b•(-b-1)+b2=0.
即b2+3b-4=0,∴b=-4或b=1.
将b=-4或b=1代入*方程,对应的△>0.
故存在直线l:x-y-4=0或x-y+1=0.
点评:本题考查用待定系数法求圆的方程以及直线方程的方法,体现了分类讨论的数学思想.本题隐藏着OA⊥OB.OA这一条件,由OA⊥OB.OA得到 x1x2+y1y2=0,是本题的“题眼”所在,由此根据这一重要信息点,采用“设而不求”法为解题带来了快捷效应.除此之外,还应对求出的 值进行必要的检验,这是因为在求解过程中并没有确保有交点A、B存在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案