精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的各项均为正数,数列{bn}满足bn=lgan,b3=18,b6=12,数列{bn}的前n项和为Sn,则使得Sn达到最大值的n是(  )
A、11B、12C、10或11D、11或12
分析:根据bn=lgan,推断出an=10bn,进而表示出a3和a6,联立方程求得公比q,进而根据等比数列的通项公式求得an,进而求得bn,然后令bn≥0求得n的范围,答案可得.
解答:解:bn=lgan?an=10bn
a3=1018
a6=1012

q3=
a6
a3
=10-6

∴q=10-2∴an=a3qn-3=1024-2n
∴bn=24-2n令bn≥0?n≤12,
∴当n=11或12时,Sn最大,
故选D.
点评:本题主要考查了等比数列的性质和等比数列的通项公式.考查了学生对基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案