精英家教网 > 高中数学 > 题目详情
12、已知正项数列{an},其前n项和Sn满足6Sn=an2+3an+2,且a1,a3,a11成等比数列,则数列{an}的通项为
an=3n-1
分析:根据所给的含有前n项和与项的关系式,仿写一个式子,两个式子相减,得到两项之间的关系,得到数列是一个等差数列,求出首项,根据三项成等比数列,去掉不合题意的首项,得到通项.
解答:解:∵6Sn=an2+3an+2,①
∴6Sn+1=an+12+3an+1+2,②
②-①得到6an+1=an+12+3an+1-an2-3an
∴3(an+1+an)=(an+1-an)(an+1+an
∵正项数列{an},
∴an+1-an=3或an+1+an=0
∴数列是一个公差为3的等差数列,
∵6a1=a12+3a1+2
∴a1=1或2,
∵a1,a3,a11成等比数列
∴当a1=1时,1,7,31不成等比数列,
首项等于2时,2,8,32成等比数列,
∴首项等于2,
∴数列的通项是an=3n-1
故答案为:an=3n-1
点评:本题考查求数列的通项,本题解题的关键是仿写一个式子,两个式子相减得到只含有通项的式子,在仿写的时候注意仿写一个n+1的式子,不然要讨论n的取值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求证:数列{
an
2n+1
}
为等差数列,并求数列{an}的通项an
(2)设bn=
1
an
,求数列{bn}的前n项和为Sn,并求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称
n
a1+a2+…+an
为n个正数a1,a2,…,an的“均倒数”,已知正项数列{an}的前n项的“均倒数”为
1
2n
,则
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列an中,a1=2,点(
an
an+1)
在函数y=x2+1的图象上,数列bn中,点(bn,Tn)在直线y=-
1
2
x+3
上,其中Tn是数列bn的前项和.(n∈N+).
(1)求数列an的通项公式;
(2)求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
1
log2bn+1log2bn+2
}
的前n项和,是否存在实数a,使得不等式Tn<log0.5(a2-
1
2
a)
对?n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},Sn=
1
8
(an+2)2

(1)求证:{an}是等差数列;
(2)若bn=
1
2
an-30
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案