精英家教网 > 高中数学 > 题目详情

【题目】某中学为了普及奥运会知识和提高学生参加体育运动的积极性,举行了一次奥运知识竞赛.随机抽取了30名学生的成绩,绘成如图所示的茎叶图,若规定成绩在75分以上(包括75分)的学生定义为甲组,成绩在75分以下(不包括75分)定义为乙组.
(Ⅰ)在这30名学生中,甲组学生中有男生7人,乙组学生中有女生12人,试问有没有90%的把握认为成绩分在甲组或乙组与性别有关;
(Ⅱ)记甲组学生的成绩分别为x1 , x2 , …,x12 , 执行如图所示的程序框图,求输出的S的值;
(Ⅲ)竞赛中,学生小张、小李同时回答两道题,小张答对每道题的概率均为 ,小李答对每道题的概率均为 ,两人回答每道题正确与否相互独立.记小张答对题的道数为a,小李答对题的道数为b,X=|a﹣b|,写出X的概率分布列,并求出X的数学期望.

附:K2= ;其中n=a+b+c+d
独立性检验临界表:

P(K2>k0

0.100

0.050

0.010

k0

2.706

3.841

6.635

【答案】解:(Ⅰ)作出2×2列联表:

甲组

乙组

合计

男生

7

6

13

女生

5

12

17

合计

12

18

30

由列联表数据代入公式,计算得K2= = ≈1.83,
因为1.83<2.706,故没有90%的把握认为成绩分在甲组或乙组与性别有关;
(Ⅱ)根据程序运行的过程,得出该程序运行后输出的是求甲组数据的平均数,
所以输出S= ×(75+75+76+76+78+80+81+81+82+84+87+91)=80.5;
(Ⅲ)由已知得X的可能取值为0,1,2,
P(X=0)=(1﹣ )(1﹣ )(1﹣ )+ (1﹣ =
P(X=1)= (1﹣ )(1﹣ )+(1﹣ )(1﹣ + =
P(X=2)= (1﹣ )=
∴X的分布列为:

X

0

1

2

P

X的数学期望值为EX=0× +1× +2× =
【解析】(Ⅰ)作2×2列联表,计算K2 , 对照数表即可得出结论;(Ⅱ)根据程序运行的过程,得出该程序运行后输出的是求平均数,求出即可;(Ⅲ)由已知得X的可能取值,计算对应的概率值,写出X的分布列,计算数学期望值.
【考点精析】根据题目的已知条件,利用离散型随机变量及其分布列的相关知识可以得到问题的答案,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a2=3对任意n∈N* , an+2≤an+32n , an+1≥2an+1都成立,则a2016=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a和b是计算机在区间(0,2)上产生的均匀随机数,则一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于米的弧田,按照上述经验公式计算所得弧田面积约是

A. 平方米 B. 平方米

C. 平方米 D. 平方米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定集合A={a1 , a2 , a3 , …,an}(n∈N* , n≥3)中,定义ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的个数为集合A两元素和的容量,用L(A)表示.若数列{an}是公差不为0的等差数列,设集合A={a1 , a2 , a3 , …,a2016},则L(A)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,平行四边形ABCD中,AB=2AD,∠DAB=60°,M是BC的中点.将△ADM沿DM折起,使面ADM⊥面MBCD,N是CD的中点,图2所示.

(Ⅰ)求证:CM⊥平面ADM;
(Ⅱ)若P是棱AB上的动点,当 为何值时,二面角P﹣MC﹣B的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,.

(1)求△ABM与△ABC的面积之比;

(2)若N为AB中点,交于点P,且 (x,y∈R),求x+y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB为直径的圆,DC的延长线与AB的延长线交于点E.
(Ⅰ)求证:DC是⊙O的切线;
(Ⅱ)若EB=6,EC=6 ,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.

(1)求a的值及集合A、B;

(2)设集合U=A∪B,求(CuA)∪(CuB)的所有子集.

查看答案和解析>>

同步练习册答案