精英家教网 > 高中数学 > 题目详情
5.若数列{an}的通项公式是an=2×(-3)n,则该数列是(  )
A.公比为-3的等比数列B.公比为2的等比数列
C.公比为3的等比数列D.首项为2的等比数列

分析 根据通项公式结合等比数列的定义进行判断即可.

解答 解:当n≥2时,$\frac{{a}_{n}}{{a}_{n-1}}=\frac{2×(-3)^{n}}{2×(-3)^{n-1}}=-3$为常数,
则数列{an}是公比为-3的等比数列,
故选:A.

点评 本题主要考查等比数列的判断,根据等比数列的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某市为了考核甲、乙两部门的工作情况,随机访问了20位市民,根据这20位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:

(1)分别估计该市的市民对甲、乙两部门评分的中位数;
(2)分别估计该市的市民对甲、乙两部门的评分不低于90的概率;
(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.${∫}_{0}^{2}$(x+1)dx=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在复平面内,复数z=2+i对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.八人分乘三辆小车,每辆小车至少载1人最多载4人,不同坐法共有(  )
A.770种B.1260种C.4620种D.2940种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合M={x|y=lg(4-2x-x2)},N=$\left\{{x\left|{\frac{3}{x+1}≥1}\right.}\right\}$,P={x|x<a}.
(1)求M∩N;
(2)若P∪(∁RN)=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.
杂质高杂质低
旧设备37121
新设备22202
根据以上数据,则(  )
A.含杂质的高低与设备改造有关B.含杂质的高低与设备改造无关
C.设备是否改造决定含杂质的高低D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知sinθ=$\frac{3}{5}$,且θ∈(0,$\frac{π}{2}}$),则$\frac{sin2θ}{{{{cos}^2}θ}}$的值等于(  )
A.$\frac{3}{2}$B.$\frac{3}{4}$C.-$\frac{3}{2}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为研究某市高中教育投资情况,现将该市某高中学校的连续5年的教育投资数据进行统计,已知年编号x与对应教育投资y(单位:百万元)的抽样数据如下表:
单位编号x12345
投资额y3.33.63.94.44.8
(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,分析5年来的该高中教育投资变化情况,预测该高中下一年的教育投资约为多少?
附:回归直线的斜率和截距的最小二乘估计公式分别为:
(参考公式:回归直线方程式$\hat y=\hat bx+\hat a$,其中$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y})}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}},\hat a=\bar y-\hat b\bar x$)

查看答案和解析>>

同步练习册答案