【题目】已知函数.
(1)讨论的单调区间与极值;
(2)已知函数的图象与直线相交于,两点(),证明:.
【答案】(1)分类讨论,答案见解析;(2)证明见解析.
【解析】
(1)求出导函数,利用确定增区间,确定减区间,从而可得极值;
(2)由(1)知只有在且即时,函数的图象与直线才有两个交点,由得,可得,同时由消去参数,并设,都可用表示,要证不等式,只要证,即,只要证,引入新函数.利用导数的知识可证.
解:(1),
①当时,,此时在
②当时,由,得.
所以时,,单调递减;
时,,单调递增.
此时函数有极小值为,无极大值.
(2)由题设可得,所以,
且由(1)可知,,.
,,∴,同理,
由,可知,所以.
由,得,
作差得
设(),由,得,
所以,即,
所以,
要证,只要证,即,只要证.
设(),
则.
所以在单调递增,.
所以.
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量()数据作了初步处理,得到下面的散点图及一些统计量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1.469 | 108.8 |
表中,
(1)根据散点图判断,与哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?给出判断即可,不必说明理由
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x、y的关系为根据(2)的结果回答下列问题:
①年宣传费时,年销售量及年利润的预报值是多少?
②年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记表示学生的考核成绩,并规定为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:
(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;
(Ⅱ)从图中考核成绩满足的学生中任取2人,求至少有一人考核优秀的概率;
(Ⅲ)记表示学生的考核成绩在区间的概率,根据以往培训数据,规定当时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在平面五边形中,是梯形,,,,,是等边三角形.现将沿折起,连接、得如图②的几何体.
(1)若点是的中点,求证:平面;
(2)若,在棱上是否存在点,使得二面角的余弦值为?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率为,与坐标轴分别交于A,B两点,且经过点Q(,1).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若P(m,n)为椭圆C外一动点,过点P作椭圆C的两条互相垂直的切线l1、l2,求动点P的轨迹方程,并求△ABP面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com