【题目】已知函数 曲线在原点处的切线为 .
(1)证明:曲线与轴正半轴有交点;
(2)设曲线与轴正半轴的交点为,曲线在点处的切线为直线,求证:曲线上的点都不在直线的上方 ;
(3)若关于的方程(为正实数)有不等实根求证:
【答案】(1)见解析(2)见解析(3)见解析
【解析】分析:(1)由条件可得,然后利用单调性及零点存在定理可得存在 使得,从而得结论成立.(2)由(1)可得曲线在点处的切线:. 令,,则,由的单调性可得,从而可得结论成立.(3)结合以上两问中的有关结论构造新的函数进行证明可得结论成立.
详解:证明:(1)∵,
∴,
由已知得 ,解得
∴,
∴在 上单调递增,在上单调递减,
又,,
∴存在 使得 .
∴曲线与轴正半轴有交点 .
(2)由(1)可得曲线在点处的切线: ,
令, ,
则,
又,
故当 时,,单调递增,
当 时,,单调递减,
所以对任意实数都有 ,
即对任意实数都有 ,
故曲线上的点都不在直线的上方.
(3)由(1)知,
所以为减函数.
设方程 的根为,
由(2)可知,
所以.
记,则
当 时, 单调递增,
当 时,,单调递减,
所以对任意的实数,都有 ,
即.
设方程的根 ,
则 ,
所以.
于是
令,
又,则,
所以 在上为增函数,
又
所以 ,
所以
科目:高中数学 来源: 题型:
【题目】已知某算法的算法框图如图所示,若将输出的(x,y)值依次记为(x1 , y1),(x2 , y2),…,(xn , yn),…,则程序结束时,共输出(x,y)的组数为( )
A.1006
B.1007
C.1008
D.1009
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的圆心在直线上,且与直线相切于点
(1)求圆C的方程;
(2)是否存在过点的直线与圆C交于两点,且的面积为(O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只药用昆虫的产卵数与一定范围内与温度有关, 现收集了该种药用昆虫的6组观测数据如下表:
温度/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数/个 | 6 | 11 | 20 | 27 | 57 | 77 |
(1)若用线性回归模型,求关于的回归方程=x+(精确到0.1);
(2)若用非线性回归模型求关的回归方程为 且相关指数
( i )试与 (1)中的线性回归模型相比,用 说明哪种模型的拟合效果更好.
( ii )用拟合效果好的模型预测温度为时该种药用昆虫的产卵数(结果取整数).
附:一组数据(x1,y1), (x2,y2), ...,(xn,yn), 其回归直线=x+的斜率和截距的最小二乘估计为,,相关指数.
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】综合题。
(1)设不等式(x﹣a)(x+a﹣2)<0的解集为N, ,若x∈N是x∈M的必要条件,求a的取值范围.
(2)已知命题:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命题,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)用定义证明函数在上是增函数;
(2)探究是否存在实数,使得函数为奇函数?若存在,求出的值;若不存在,请说明理由;
(3)在(2)的条件下,解不等式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有 .
(1)解不等式 ;
(2)若f(x)≤t2﹣2at+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com