【题目】已知椭圆C: =1(a>b>0)的离心率为 ,设F1、F2分别为椭圆的左、右焦点,椭圆上任意一个动点M到左焦点F1的距离的最大值 为 +1 (Ⅰ)求椭圆C的方程;
(Ⅱ)设直线L的斜率为k,且过左焦点F1 , 与椭圆C相交于P、Q两点,若△PQF2的面积为 ,试求k的值及直线L的方程.
【答案】解:(Ⅰ) ,a+c= +1∴ .椭圆C的方程为 . (Ⅱ)F1(﹣1,0),F2(1,0),直线l:y=k(x+1),
设P(x1 , y1),Q(x2 , y2)
联立 得:(1+2k2)x2+4k2x+2k2﹣2=0
∴ .
= ,
点F2到直线l的距离 ,
∴s△PQF2= |PQ|d=
化简得:16k4+16k2﹣5=0,
(4k2+5)(4k2﹣1)=0,∴k2= ,k=±
∴直线l的方程为x±2y+1=0
【解析】(Ⅰ)由 ,a+c= +1,可得a、b、c;(Ⅱ)联立 化简,结合韦达定理求解求得PQ,用距离公式得点F2到直线l的距离d,s△PQF2= |PQ|d= ,即可求得k.
科目:高中数学 来源: 题型:
【题目】某地政府为了对房地产市场进行调控决策,统计部门对外来人口和当地人口进行了买房的心理预期调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表(不全):
已知样本中外来人口数与当地人口数之比为3:8.
(1)补全上述列联表;
(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,用表示这3人指标之和,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,CB⊥C1B,BC=1,CC1=2,A1B1= ,
(1)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1;
(2)在(1)的条件下,求AE和BC1所成角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)五边形中,
,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.
(1)求证:平面平面;
(2)若四棱柱的体积为,求四面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)+g(x)=2x , 则有( )
A.f(3)<g(0)<f(4)
B.g(0)<f(4)<f(3)
C.g(0)<f(3)<f(4)
D.f(3)<f(4)<g(0)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知,在直角坐标系中,直线的参数方程为(为参数);在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,直线的极坐标方程是.
(Ⅰ)求证: ;
(Ⅱ)设点的极坐标为, 为直线, 的交点,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com