精英家教网 > 高中数学 > 题目详情
(2013•延庆县一模)已知函数f(x)=ax3+bx2-2(a≠0)有且仅有两个不同的零点x1,x2,则(  )
分析:求导数可得x=0,或x=-
2b
3a
时,函数取得极值,要满足题意需f(-
2b
3a
)=0,可得a,b的关系,当a>0时,x1+x2的正负不确定,不合题意;当a<0,可得x1x2<0,x1+x2>0,进而可得答案.
解答:解:原函数的导函数为f′(x)=3ax2+2bx=x(3ax+2b),
令f′(x)=0,可解得x=0,或x=-
2b
3a

故当x=0,或x=-
2b
3a
时,函数取得极值,又f(0)=-2<0,
所以要使函数f(x)=ax3+bx2-2(a≠0)有且仅有两个不同的零点,
则必有f(-
2b
3a
)=a(-
2b
3a
)3
+b(-
2b
3a
)
2
-2=0,解得b3=
27a2
2
,且b>0,
即函数的一根为x1=-
2b
3a

(1)如下图,若a>0,可知x1=-
2b
3a
<0,且为函数的极大值点,x=x2处为函数的极小值点,
此时函数有2个零点:-
2b
3a
,x2>0,显然有x1x2<0,但x1+x2的正负不确定,故可排除C,D;
(2)如图2,若a<0,必有x1=-
2b
3a
>0,此时必有x1x2<0,x1=-
2b
3a
的对称点为x=
2b
3a

则f(
2b
3a
)=a(
2b
3a
)
3
+b(
2b
3a
)
2
-2=
20b3
27a2
-2=
20
27a2
×
27a2
2
-2
=8>0,
则必有x2
2b
3a
,即x2-
2b
3a
>0,即x1+x2>0
故选B
点评:本题考查根的存在性及根的个数的判断,涉及三次函数的图象以及分类讨论的思想,属中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•延庆县一模)空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
PM2.5
日均浓度
0~35 35~75 75~115 115~150 150~250 >250
空气质量级别 一级 二级 三级 四级 五级 六级
空气质量类型 轻度污染 中度污染 重度污染 严重污染
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知函数f(x)=
log4x, x>0
3x, x≤0
,则f[f(
1
16
)]
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求三棱锥C-PAD的体积VC-PAD
(Ⅲ)在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案