【题目】已知函数()是奇函数.
(1)求实数的值;
(2)用函数单调性的定义证明函数在上是增函数;
(3)对任意的,若不等式恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥,平面平面ABE,四边形ABCD为矩形,,F为CE上的点,且平面ACE.
(1)求证:;
(2)设M在线段DE上,且满足,试在线段AB上确定一点N,使得平面BCE,并求MN的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从抛物线上任意一点P向x轴作垂线段,垂足为Q,点M是线段上的一点,且满足
(1)求点M的轨迹C的方程;
(2)设直线与轨迹c交于两点,T为C上异于的任意一点,直线,分别与直线交于两点,以为直径的圆是否过x轴上的定点?若过定点,求出符合条件的定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下是新兵训练时,某炮兵连周中炮弹对同一目标的命中的情况的柱状图:
(1)计算该炮兵连这周中总的命中频率,并确定第几周的命中频率最高;
(2)以(1)中的作为该炮兵连甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射次,记命中的次数为,求的方差;
(3)以(1)中的作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过(取)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点到定点和到直线的距离之比为,设动点的轨迹为曲线,过点作垂直于轴的直线与曲线相交于两点,直线与曲线交于两点,与相交于一点(交点位于线段上,且与不重合).
(1)求曲线的方程;
(2)当直线与圆相切时,四边形的面积是否有最大值?若有,求出其最大值及对应的直线的方程;若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农户计划种植莴笋和西红柿,种植面积不超过亩,投入资金不超过万元,假设种植莴笋和西红柿的产量、成本和售价如下表:
年产量/亩 | 年种植成本/亩 | 每吨售价 | |
莴笋 | 5吨 | 1万元 | 0.5万元 |
西红柿 | 4.5吨 | 0.5万元 | 0.4万元 |
那么,该农户一年种植总利润(总利润=总销售收入-总种植成本)的最大值为____万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设点,,(其中表示a、b中的较大数)为、两点的“切比雪夫距离”.
(1)若,Q为直线上动点,求P、Q两点“切比雪夫距离”的最小值;
(2)定点,动点满足,请求出P点所在的曲线所围成图形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com