精英家教网 > 高中数学 > 题目详情

【题目】已知函数,实数为常数).

1)若,且函数上的最小值为0,求的值;

2)若对于任意的实数,函数在区间上总是减函数,对每个给定的,求的最大值

【答案】(1);(2).

【解析】试题分析:(1)先求导求函数在已知区间上的极值注意极值点是否在定义域内,进行分类讨论确定最小值列出关于的方程即可得结果;(2)函数在区间上单调递减转化为导函数小于等于0恒成立再转化为二次函数根的分布问题.

试题解析:1)当时,

,得(舍),

①当>1时,

1

-

0

+

∴当时,

,得

②当时, 0上恒成立,

上为增函数,当时,

,得(舍).

综上所述,所求

(2) 对于任意的实数 在区间上总是减函数,

则对于x(1,3) 0

在区间[1,3]上恒成立.

g(x)= g(x) 在区间[1,3]上恒成立.

g(x)二次项系数为正,得

亦即

=

n6时,m,当n≥6时,m

n6时,h(n)= ,当n≥6时,h(n)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若上存在零点,求实数的取值范围;

(2)当时, 若对任意的,总存在使成立, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:

甲校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

3

4

8

15

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

15

x

3

2

乙校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

1

2

8

9

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

10

10

y

3

xy的值分别为( )

(A)、12,7 (B)、 10,7 (C)、 10,8 (D)、 11,9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得 M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中是自然常数,

(1)时,求的单调性和极值;

(2)恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数 在(﹣∞,+∞)上有极值,命题q:双曲线 的离心率e∈(1,2).若p∨q是真命题,p∧q是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x﹣y+1=0相交的弦长为2 ,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形的顶点分别为A(﹣1,3),B(3,2),C(1,0)
(1)求BC边上高的长度;
(2)若直线l过点C,且在l上不存在到A,B两点的距离相等的点,求直线l的方程.

查看答案和解析>>

同步练习册答案