精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,a1+an=66,a2an-1=128,Sn=126,则n的值为(  )
分析:设an=a1qn-1,用an和a1表示出a2•an-1根据韦达定理推知a1和an是方程x2-66x+128=0的两根,求得a1和an进而
求得qn-1,把a1和an代入Sn=126,进而求得q,再把q代入qn-1=32,求得n的值.
解答:解:由题意可得a1+an=66,a1 •an =a2an-1=128,根据韦达定理推知a1和an是方程x2-66x+128=0的两根,
∴a1=2 且 an=64,故 qn-1=32; 或a1=64 且an=2,故 qn-1=
1
32

当 a1=2 且 an=64,qn-1=32 时,再由Sn=126=
a1(1-n)
1-q
,求得q=2,∴n=6.
当 a1=64 且an=2,qn-1=
1
32
时,再由Sn=126=
a1(1-n)
1-q
,求得q=
1
2
,∴n=6.
综上可得,n=6,
故选B.
点评:本题主要考查等比数列的性质,等比数列的通项公式,等比数列的前n项和公式.解题的过程中巧妙的利用了一元二次方程中的韦达定理,值得借鉴,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案