19£®Èçͼ£¬¡÷PABµÄ¶¥µãA¡¢BΪ¶¨µã£¬PΪ¶¯µã£¬ÆäÄÚÇÐÔ²O1ÓëAB¡¢PA¡¢PB·Ö±ðÏàÇÐÓÚµãC¡¢E¡¢F£¬ÇÒ$AB=2\sqrt{3}$£¬||AC|-|BC||=2£®
£¨1£©Çó||PA|-|PB||µÄÖµ£»
£¨2£©½¨Á¢Êʵ±µÄƽÃæÖ±½Ç×ø±êϵ£¬Ç󶯵ãPµÄ¹ì¼£WµÄ·½³Ì£»
£¨3£©ÉèlÊǼȲ»ÓëABƽÐÐÒ²²»ÓëAB´¹Ö±µÄÖ±Ïߣ¬Ï߶ÎABµÄÖеãOµ½Ö±ÏßlµÄ¾àÀëΪ $\sqrt{2}$£¬Ö±ÏßlÓëÇúÏßWÏཻÓÚ²»Í¬µÄÁ½µãG¡¢H£¬µãMÂú×ã$2\overrightarrow{OM}=\overrightarrow{OG}+\overrightarrow{OH}$£¬Ö¤Ã÷£º$2|\overrightarrow{OM}|=|\overrightarrow{GH}|$£®

·ÖÎö £¨1£©¸ù¾ÝƽÃ漸ºÎµÄ֪ʶ¿ÉµÃ¡à||PA|-|PB||=||AC|-|BC||=2£»
£¨2£©ÒÔµãOΪ×ø±êÔ­µã£¬Ï߶ÎABËùÔÚµÄÖ±ÏßΪxÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬¹ÊÓÉË«ÇúÏߵĶ¨Ò壬֪¶¯µãPµÄ¹ì¼£ÊÇÒÔA£¬BΪ½¹µãµÄË«ÇúÏߵIJ¿·Ö£¬ÎÊÌâµÃÒÔ½â¾ö£»
£¨3£©ÉèÖ±Ïßl£ºy=kx+b£¬k¡Ù0£¬ÁªÁ¢·½³Ì×飬Ïûy£¬¸ù¾Ý¸ùÓëϵÊýµÄ¹Øϵ¿ÉµÃ£¬x1x2=-$\frac{{b}^{2}+2}{2-{k}^{2}}$£¬x1+x2=$\frac{2kb}{2-{k}^{2}}$£¬ÔÙ¸ù¾ÝÏòÁ¿µÄÊýÁ¿»ý¹«Ê½¿ÉµÃ$\overrightarrow{OG}$•$\overrightarrow{OH}$=-2k2+b2-2£¬ÔÙ¸ù¾Ýµãµ½Ö±ÏߵľàÀ빫ʽ¿ÉµÃ2k2+2=b2£¬¼´¿ÉÖ¤Ã÷$\overrightarrow{OG}$•$\overrightarrow{OH}$=0£¬ÓÉ$2\overrightarrow{OM}=\overrightarrow{OG}+\overrightarrow{OH}$£¬¼´¿ÉÖ¤Ã÷½áÂÛ³ÉÁ¢£®

½â´ð ½â£º£¨1£©¸ù¾ÝÇÐÏß³¤¶¨Àí¿ÉµÃ|PE|=|PF|£¬|AE|=|AC|£®|BF|=|BC|£¬
¡à||PA|-|PB||=||PE|+|AE|-|PF|-|BF||=||AC|-|BC||=2£»
£¨2£©ÒÔµãOΪ×ø±êÔ­µã£¬Ï߶ÎABËùÔÚµÄÖ±ÏßΪxÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬
ÓÉ£¨1£©¿ÉÖª||PA|-|PB||=2£¼|AB|=2$\sqrt{3}$£¬
¡àÓÉË«ÇúÏߵĶ¨Ò壬֪¶¯µãPµÄ¹ì¼£ÊÇÒÔA£¬BΪ½¹µãµÄË«ÇúÏߵIJ¿·Ö£¬
¡ß2a=2£¬2c=2$\sqrt{3}$£¬
¡à¶¯µãPµÄ¹ì¼£WµÄ·½³Ìx2-$\frac{{y}^{2}}{2}$=1£¬£¨y¡Ù0£©£»
£¨3£©Ö¤Ã÷£ºÉèÖ±Ïßl£ºy=kx+b£¬k¡Ù0£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+b}\\{2{x}^{2}-{y}^{2}=2}\end{array}\right.$£¬µÃ£¨2-k2£©x2-2kbx-b2-2=0£¬
ÓÉÌâÒâÓÐk2¡Ù2£¬¡÷=b2-k2+2£¾0£¬x1x2=-$\frac{{b}^{2}+2}{2-{k}^{2}}$£¬x1+x2=$\frac{2kb}{2-{k}^{2}}$£¬
¡à$\overrightarrow{OG}$•$\overrightarrow{OH}$=x1x2+y1y2=£¨k2+1£©x1x2+kb£¨x1+x2£©+b2=-2k2+b2-2£¬
ÓÖd=$\sqrt{2}$=$\frac{|b|}{\sqrt{{k}^{2}+1}}$£¬
¡à2k2+2=b2£¬
¡à$\overrightarrow{OG}$•$\overrightarrow{OH}$=0£¬
¡ß$2\overrightarrow{OM}=\overrightarrow{OG}+\overrightarrow{OH}$£¬
¡à$2|\overrightarrow{OM}|=|\overrightarrow{GH}|$£®

µãÆÀ ±¾Ì⿼²éÁËË«ÇúÏߵķ½³ÌµÄÇ󷨺ÍÖ±ÏߺÍË«ÇúÏßµÄλÖùØϵ£¬ÒÔ¼°ÏòÁ¿µÄÊýÁ¿»ýºÍµãµ½Ö±ÏߵľàÀ빫ʽ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Ô²C1µÄ¼«×ø±ê·½³ÌÊǦÑ2+2¦Ñcos¦È=0£¬Ô²C2µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=cos¦Á}\\{y=-1+sin¦Á}\end{array}\right.$£¨¦ÁÊDzÎÊý£©£®
£¨¢ñ£©ÇóC1ºÍC2µÄ½»µãµÄ¼«×ø±ê£»
£¨¢ò£©Ö±Ïßl¾­¹ýC1ºÍC2µÄ½»µã£¬ÇÒ´¹Ö±ÓÚ¹«¹²ÏÒ£¬ÇóÖ±ÏßlµÄ¼«×ø±ê·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÉèF1¡¢F2·Ö±ðÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬¹ýµãF2µÄÖ±Ïß½»Ë«ÇúÏßÓÒÖ§ÓÚA¡¢BÁ½µã£®ÈôAF2¡ÍAF1£¬ÇÒ|BF2|=2|AF1|£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{17}}{3}$B£®$\frac{\sqrt{10}}{2}$C£®$\sqrt{13}$D£®$\frac{\sqrt{58}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªµãPΪ˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÓÒÖ§ÉÏÒ»µã£¬F1£¬F2Ϊ˫ÇúÏßµÄ×ó¡¢ÓÒ½¹µã£¬Ê¹£¨$\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$£©£¨$\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$£©=0£¨OΪ×ø±êÔ­µã£©£¬ÇÒ|$\overrightarrow{P{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{P{F}_{2}}$|£¬ÔòË«ÇúÏßÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}+1}{2}$B£®$\sqrt{6}$+1C£®$\sqrt{3}$+1D£®$\frac{\sqrt{3}+1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Å×ÎïÏßx=4y2µÄ½¹µã×ø±êÊÇ  £¨¡¡¡¡£©
A£®£¨$\frac{1}{16}$£¬0£©B£®£¨1£¬0£©C£®£¨0£¬$\frac{1}{16}$£©D£®£¨0£¬1 £©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÏÂÁи÷ÃüÌâÊÇÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®Èç¹ûa£¾b£¬ÄÇô$\frac{a}{c}$£¾$\frac{b}{c}$B£®Èç¹ûac£¼bc£¬ÄÇôa£¼b
C£®Èç¹ûa£¾b£¬c£¾d£¬ÄÇôa-c£¾b-dD£®Èç¹ûa£¾b£¬ÄÇôa-c£¾b-c

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÃüÌâp£º?x0¡ÊR£¬lnx0¡Ýx0-1£®ÃüÌâq£º?¦È¡ÊR£¬sin¦È+cos¦È£¾-1£®ÔòÏÂÁÐÃüÌâÖÐΪÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®p¡Ä£¨?q£©B£®£¨?p£©¡ÅqC£®£¨?p£©¡Ä£¨?q£©D£®p¡Äq

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Å×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ×¼ÏßΪl£¬½¹µãΪF£¬Ô²MµÄÔ²ÐÄÔÚxÖáµÄÕý°ëÖáÉÏ£¬Ô²MÓëyÖáÏàÇУ¬¹ýÔ­µãO×÷Çãб½ÇΪ$\frac{¦Ð}{3}$µÄÖ±Ïßm£¬½»Ö±ÏßlÓÚµãA£¬½»Ô²MÓÚ²»Í¬µÄÁ½µãO¡¢B£¬ÇÒ|AO|=|BO|=2£¬ÈôPΪÅ×ÎïÏßCÉϵĶ¯µã£¬Ôò$\overrightarrow{PM}•\overrightarrow{PF}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®-2B£®2C£®$\frac{7}{4}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª0£¼¦Á£¼$\frac{¦Ð}{2}$£¬cos£¨2¦Ð-¦Á£©-sin£¨¦Ð-¦Á£©=-$\frac{\sqrt{5}}{5}$
£¨1£©Çósin¦Á+cos¦ÁµÄÖµ£»
£¨2£©Çó$\frac{{{{cos}^2}£¨\frac{3¦Ð}{2}+¦Á£©+2cos¦Ácos£¨\frac{¦Ð}{2}-¦Á£©}}{{1+{{sin}^2}£¨\frac{¦Ð}{2}-¦Á£©}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸