精英家教网 > 高中数学 > 题目详情

【题目】对于无穷数列,记,若同时满足条件①均单调递增;②,则称是无穷互补数列.

1)若,试判断数列是否为无穷互补数列,并说明理由;

2)若,且是无穷互补数列,求数列项的和.

【答案】1)见解析(2

【解析】

1)数列表示所有的正偶数,而数列不能表示所有正奇数,即可得出结论;

2)数列的前30项是的所有整数,除去之后剩下的整数,利用等差数列和等比数列的求和公式,分组求和,即可得出答案.

1)数列不是无穷互补数列,理由如下

数列为递增数列,且表示所有的正偶数

,解得,则数列不是无穷互补数列

2)数列的前7项分别为

因为是无穷互补数列,所以数列的前30项是的所有整数,除去之后剩下的整数

则数列项的和为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知).

(Ⅰ)判断当的单调性;

(Ⅱ)若)为两个极值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,若上有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由10位同学组成四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学.现从这10位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中勾股容方问题:今有勾五步,股十二步,问勾中容方几何?魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形.该矩形长为,宽为内接正方形的边长.由刘徽构造的图形还可以得到许多重要的结论,如图3.设为斜边的中点,作直角三角形的内接正方形对角线,过点于点,则下列推理正确的是(

①由图1和图2面积相等得

②由可得

③由可得

④由可得

A.①②③④B.①②④C.②③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若存在常数M,使得对任意中至少有一个不小于M,则记作,那么下列命题正确的是( ).

A.,则数列各项均大于或等于M

B.,则

C.,则

D.,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于( )(参考公式:

A. 2B. C. 4D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Pxy)是平面内的动点,定点F10),定直线lx=﹣1x轴交于点E,过点PPQl于点Q,且满足 .

1)求动点P的轨迹t的方程;

2)过点F作两条互相垂直的直线,分别交曲线t于点A,B,和点CD.设线段AB和线段CD的中点分别为MN,记线段MN的中点为K,点O为坐标原点,求直线OK的斜率k的取值范围.

查看答案和解析>>

同步练习册答案