精英家教网 > 高中数学 > 题目详情
4.在不等边△ABC中,A是最小角,求证:A<60°.

分析 利用反证法.假设A≥60°,从而可得三内角和大于180°,与三角形中三内角和等于180°矛盾.

解答 证明:假设A≥60°,∵A是不等边三角形ABC的最小角,∴BA≥60°,CA≥60°,
A+B+C>180°,与三角形内角和等于180°矛盾,
∴假设错误,原结论成立,即A<60°.

点评 本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.实数x,y,m,n满足.x2+y2+2x+2y-8=0.m2+n2+8m+8n+28=0,则(x-m)2+(y-n)2的最大值和最小值分别为(2+$\sqrt{10}$+3$\sqrt{2}$)2,0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知O为坐标原点,点M(1-$\sqrt{3}$cos2x,1),点N(1,a+sin2x)(x∈R)(a为常实数),且y=$\overrightarrow{OM}•\overrightarrow{ON}$,
(1)求y关于x的函数关系式y=f(x);
(2)当x∈[0,$\frac{π}{4}$]时,f(x)的最大值是4,求a的值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.f(x)是定义域在R上的增函数:且满足f($\frac{x}{y}$)=f(x)-f(y).
(1)求f(1)的值:
(2)若f(6)=1,求方程f(x)=2的解;
(3)若f(6)=1,解不等式f(x+2)-f($\frac{1}{x}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.当|$\overrightarrow{a}$|=|$\overrightarrow{b}$|≠0,且$\overrightarrow{a}$、$\overrightarrow{b}$不共线时,$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的关系是(  )
A.共面B.不共面C.共线D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,且(3$\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),求$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已钮点P(1,0),过点P的直线l交抛物线y=x2于A、B两点,且|PA|=|AB|,则直线l的斜率是2-$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设O为坐标原点,若点A的坐标为(-1,3),则$\overrightarrow{OA}$的坐标是(  )
A.(1,3)B.(3,-1)C.(1,-3)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知锐角△ABC中,角α+$\frac{π}{6}$的终边过点P(sinB-cosA,cosB-sinA),且cos(α+$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,则cos2α的值为(  )
A.$\frac{\sqrt{3}-\sqrt{2}}{6}$B.-$\frac{\sqrt{2}}{3}$-$\frac{1}{6}$C.$\frac{1}{2}$-$\frac{\sqrt{3}}{6}$D.-$\frac{\sqrt{6}}{3}$-$\frac{1}{6}$

查看答案和解析>>

同步练习册答案