精英家教网 > 高中数学 > 题目详情
19.若x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x≤y}\\{x+y-4≤0}\end{array}\right.$则x2+y2+4x的最大(  )
A.20B.16C.14D.6

分析 先根据约束条件画出可行域,再利用几何意义求最值,z=x2+y2+4x=(x+2)2+y2-4表示点(-2,0)到可行域的点的距离的平方减4,故只需求出点(-2,0)到可行域的距离的最小值即可.

解答 解:根据约束条件画出可行域如图:
z=x2+y2+4x=(x+2)2+y2-4表示点P(-2,0)到可行域的点的距离的平方减4.
由$\left\{\begin{array}{l}{x=y}\\{x+y-4=0}\end{array}\right.$,解得A(2,2)
当点A到点P(-2,0)距离最大,
z=x2+y2+4x=4+4+8=16.
故选:B.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知向量$\vec a=(3,-1)$,$\vec b=(1,x)$,且$\vec a⊥\vec b$,那么x的值是(  )
A.-3B.3C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前项n和为Sn,且3Sn=4an-4.又数列{bn}满足bn=log2a1+log2a2+…+log2an
(1)求数列{an}、{bn}的通项公式;
(2)若${T_n}=\frac{1}{b_1}+\frac{1}{b_2}+…+\frac{1}{b_n}$,求使得不等式$k\frac{{n•{a_n}}}{n+1}≥(2n-3){T_n}$恒成立的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线mx-y+m+2=0与圆C1:(x+1)2+(y-2)2=1相交于A,B两点,点P是圆C2:(x-3)2+y2=5上的动点,则△PAB面积的最大值是3$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z满足(1+i)z=i(i是虚数单位),则z=(  )
A.$\frac{1}{2}+\frac{1}{2}i$B.-$\frac{1}{2}+\frac{1}{2}i$C.-$\frac{1}{2}-\frac{1}{2}i$D.$\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知抛物线C:y2=2px(p>0)的焦点为F,过F且倾斜角为60°的直线l与抛物线C在第一、四象限分别交于A、B两点,与它的准线交于点P,则$\frac{|AB|}{|AP|}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.从某项综合能力测试中抽取100人的成绩,统计如下,则这100个成绩的平均数为(  )
分数12345
人数2010401020
A.3B.2.5C.3.5D.2.75

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.把二项式($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)8的展开式中所有的项重现排成一列,其中有理项都互不相邻的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=|$\frac{4}{x}$-ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为(  )
A.(-∞,0]B.(-∞,1]C.(-∞,2]D.(-∞,3]

查看答案和解析>>

同步练习册答案