A. | 20 | B. | 16 | C. | 14 | D. | 6 |
分析 先根据约束条件画出可行域,再利用几何意义求最值,z=x2+y2+4x=(x+2)2+y2-4表示点(-2,0)到可行域的点的距离的平方减4,故只需求出点(-2,0)到可行域的距离的最小值即可.
解答 解:根据约束条件画出可行域如图:
z=x2+y2+4x=(x+2)2+y2-4表示点P(-2,0)到可行域的点的距离的平方减4.
由$\left\{\begin{array}{l}{x=y}\\{x+y-4=0}\end{array}\right.$,解得A(2,2)
当点A到点P(-2,0)距离最大,
z=x2+y2+4x=4+4+8=16.
故选:B.
点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | -3 | B. | 3 | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}+\frac{1}{2}i$ | B. | -$\frac{1}{2}+\frac{1}{2}i$ | C. | -$\frac{1}{2}-\frac{1}{2}i$ | D. | $\frac{1}{2}-\frac{1}{2}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
分数 | 1 | 2 | 3 | 4 | 5 |
人数 | 20 | 10 | 40 | 10 | 20 |
A. | 3 | B. | 2.5 | C. | 3.5 | D. | 2.75 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{5}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,0] | B. | (-∞,1] | C. | (-∞,2] | D. | (-∞,3] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com