精英家教网 > 高中数学 > 题目详情

【题目】已知B为线段MN上一点,|MN|=6,|BN|=2,动圆C与MN相切于点B,分别过M,N作圆C的切线,两切线交于点P.求点P的轨迹方程.

【答案】

【解析】分析:如图所示,以MN所在直线为x轴,MN的垂直平分线为y轴O为坐标原点,建立平面直角坐标系,设MP,NP分别与C相切于D、E两点,利用圆的切线的性质可得:,利用双曲线的定义即可判断出.

详解MN所在的直线为x,MN的垂直平分线为y,O为坐标原点,建立平面直角坐标系,如图所示.

MP,NP分别与C相切于D,E两点,则

|PM|-|PN|=|MD|-|NE|=|MB|-|BN|=6-2-2=2,|MN|>2.

所以点P的轨迹是以M,N为焦点,2a=2,2c=6的双曲线的右支(顶点除外).

由a=1,c=3,b2=8.

故点P的轨迹方程为x2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+1(a,b为实数),

(1)f(-1)=0,且对任意实数x均有f(x)0成立,F(x)的表达式;

(2)(1)的条件下,x[-2,2],g(x)=f(x)-kx是单调函数,求实数k的取值范围;

(3)mn<0,m+n>0,a>0,f(x)满足f(-x)=f(x),试比较F(m)+F(n)的值与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,记A(n)=a1+a2+…+an , B(n)=a2+a3+…+an+1 , C(n)=a3+a4+…+an+2 , n=1,2,….
(1)若a1=1,a2=5,且对任意n∈N* , 三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式.
(2)证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N* , 三个数A(n),B(n),C(n)组成公比为q的等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),

(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;
(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高0.02万元,已知建筑第5层楼房时,每平方米建筑费用为0.8万元.

(1)若学生宿舍建筑为层楼时,该楼房综合费用为万元,综合费用是建筑费用与购地费用之和),写出的表达式;

(2)为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?

【答案】(1);(2)学校应把楼层建成层,此时平均综合费用为每平方米万元

【解析】

由已知求出第层楼房每平方米建筑费用为万元,得到第层楼房建筑费用,由楼房每升高一层,整层楼建筑费用提高万元,然后利用等差数列前项和求建筑层楼时的综合费用

设楼房每平方米的平均综合费用为,则,然后利用基本不等式求最值.

解:由建筑第5层楼房时,每平方米建筑费用为万元,

且楼房每升高一层,整层楼每平方米建筑费用提高万元,

可得建筑第1层楼房每平方米建筑费用为:万元.

建筑第1层楼房建筑费用为:万元

楼房每升高一层,整层楼建筑费用提高:万元

建筑第x层楼时,该楼房综合费用为:

设该楼房每平方米的平均综合费用为

则:

当且仅当,即时,上式等号成立.

学校应把楼层建成10层,此时平均综合费用为每平方米万元.

【点睛】

本题考查简单的数学建模思想方法,训练了等差数列前n项和的求法,训练了利用基本不等式求最值,是中档题.

型】解答
束】
20

【题目】已知

(1)求函数的最小正周期和对称轴方程;

(2)若,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的解析式满足

1)求函数的解析式;

2)若在区间(1+∞)单调递增,求的取值范围(只需写出范围,不用说明理由)。

3)当时,记函数,求函数gx)在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足:对任意的,都有:

1)求证:函数是奇函数;

2)若当时,有,求证:上是减函数;

3)在(2)的条件下解不等式:;

4)在(2)的条件下求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个酒杯的轴截面是一条抛物线的一部分,它的方程是x2=2y,y∈[0,10],在杯内放入一个清洁球,要求清洁球能擦净酒杯的最底部(如图),则清洁球的最大半径为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程是为参数),以该直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)写出曲线的普通方程和直线的直角坐标方程;

(2)设点,直线与曲线相交于两点,且,求实数的值.

查看答案和解析>>

同步练习册答案