精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,是等边三角形,是等腰直角三角形,,平面平面平面,点的中点,连接.

(1)求证:平面

(2),求三棱锥的体积.

【答案】(1)证明略;(2)

【解析】

试题分析:(1)因为是等腰直角三角形,点的中点,所以,因为平面平面,由面面垂直的性质定理得平面,故得,由线面平行的判定定理即得平面

(2)由(1)知平面,所以.

试题解析: (1)证明:

是等腰直角三角形,,的中点,

.

平面平面,平面平面

平面

平面,

平面,平面,

平面

(2):()平面,

到平面的距离等于点到平面的距离.

是等边三角形,

.

连接, , .

=

三棱锥的体积为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】A在直角坐标系中,曲线的参数方程为,( 为参数),直线的方程为为极点, 轴的正半轴为极轴建立极坐标系.

(1)求曲线和直线的极坐标方程;

(2)若直线与曲线交于两点,求

已知不等式的解集为.

(1)求的值;

(2)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆的极坐标方程为,若以极点为原点,极轴所在的直线为轴建立平面直角坐标系

(1)求圆的参数方程;

(2)在直角坐标系中,点是圆上的动点,试求的最大值,并求出此时点的直角坐标;

(3)已知为参数),曲线为参数),若版曲线上各点恒坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆和抛物线交于两点,且直线恰好通过椭圆的右焦点.

1)求椭圆的标准方程;

2)经过椭圆右焦点的直线和椭圆交于两点,点在椭圆上,且

其中为坐标原点,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄(单位:岁)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.

参考数据如下:

附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值: (其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上有最大值1和最小值0,设.

(1)求的值;

(2)若不等式上有解,求实数的取值范围;

(3)若方程 (为自然对数的底数)有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究型学习小组调查研究中学生使用智能手机对学习的影响.部分统计数据如下表:

参考数据:

参考公式: ,其中

(Ⅰ)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用智能手机对学习有影响?

()研究小组将该样本中使用智能手机且成绩优秀的4位同学记为组,不使用智能手机且成绩优秀的8位同学记为组,计划从组推选的2人和组推选的3人中,随机挑选两人在学校升旗仪式上作国旗下讲话分享学习经验.求挑选的两人恰好分别来自两组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出了四个类比推理:

1类比推出为三个向量则

2a,b为实数,则a=b=0类比推出为复数,若

3在平面内,三角形的两边之和大于第三边类比推出在空间中,四面体的任意三个面的面积之和大于第四个面的面积

4在平面内,过不在同一条直线上的三个点有且只有一个圆类比推出在空间中,过不在同一个平面上的四个点有且只有一个球

上述四个推理中,结论正确的个数有

A1个 B2个 C3个 D4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某学校高一年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成6组:第1组,第2组,…,第6组,下图是按上述分组方法得到的频率分布直方图.

(1)求这50名男生身高的中位数,并估计该校高一全体男生的平均身高;

(2)求这50名男生当中身高不低于176的人数,并且在这50名身高不低于176的男生中任意抽取2人,求这2人身高都低于180的概率.

查看答案和解析>>

同步练习册答案