精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆过点,且离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,以为对角线作正方形,记直线轴的交点为,问两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.

【答案】(Ⅰ);(Ⅱ)

【解析】试题分析:

(1)利用题意确定 的值即可求得椭圆的标准方程;

(2)利用题意联立直线与椭圆的方程,利用弦长公式求得 的值,最后利用勾股定理进行计算,证得 为定值即可.

试题解析:

(Ⅰ)设椭圆的半焦距为

因为点在椭圆上,所以.故

又因为,所以

所以椭圆的标准方程为:

(Ⅱ)设 ,线段中点为

联立,得:

,可得

所以

所以中点为

弦长

又直线轴的交点

所以

所以

所以两点间距离为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 在区间内单调递减,在区间内单调递增,且上有三个零点,1是其中一个零点.

(1)求的取值范围;

(2)若直线在曲线的上方部分所对应的的集合为,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是菱形, 平面 ,点的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.

如图,在阳马中,侧棱底面,且 中点,点上,且平面,连接

(Ⅰ)证明: 平面

(Ⅱ)试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;

(Ⅲ)已知 ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结果.

1求第一次检测出的是次品且第二次检测出的是正品的概率;

2已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

1)求函数上的单调区间,并给以证明

2)设关于的方程的两根为,试问是否存在实数,使得不等式对任意的恒成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数

(1)函数过定点,求的值;

(2)当时,求函数的最小值

(3)是否存在实数,使得(2)中关于的函数的定义域为时,值域为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若存在实数使得不等式成立,求实数的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在点处有相同的切线.

(Ⅰ)若函数的图象有两个交点,求实数的取值范围;

(Ⅱ)若函数有两个极值点 ,且,证明:

查看答案和解析>>

同步练习册答案