精英家教网 > 高中数学 > 题目详情
已知点P是抛物线y2=4x上的点,设点P到抛物线的准线的距离为d1,到圆(x+3)2+(y-3)2=1上的一动点Q距离为d2,则d1+d2的最小值是______________.

答案:4

解析:由抛物线定义知,P到准线距离等于P到焦点A的距离.如图,连结圆心B与A,交圆于C,交抛物线的点即为使d1+d2最小时P的位置.

(d1+d2)min=|AC|,B(-3,3),A(1,0),|AB|==5.|BC|=1.

∴|AC|=5-1=4.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是抛物线y2=4x上的动点,点P在y轴上的射影是M,点A的坐标是(4,a),则当|a|>4时,|PA|+|PM|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(
7
2
,4)
,则|PA|+|PM|的最小值是(  )
A、5
B、
9
2
C、4
D、AD

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上的动点,过点P作y轴垂线PM,垂足为M,点A的坐标是A(
7
2
,4)
,则|PA|+|PM|的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上动点,求P到直线l:x-y+6=0的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上的动点,F是抛物线的焦点,若点A(3,2),则|PA|+|PF|的最小值是
7
2
7
2

查看答案和解析>>

同步练习册答案