精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若函数有3个不同的零点x1,x2,x3(x1<x2<x3),则的取值范围是_________

【答案】

【解析】

先根据题意,求出的解得,然后求出f(x)的导函数,求其单调性以及最值,在根据题意求出函数有3个不同的零点x1,x2,x3(x1<x2<x3),分情况讨论求出的取值范围.

解:令t=fx),函数有3个不同的零点,

+m=0有两个不同的解,解之得

因为的导函数

,令,解得x>e,解得0<x<e

可得fx)在(0e)递增,在递减;

f(x)的最大值为 ,且

f(1)=0

要使函数有3个不同的零点,

(1)有两个不同的解,此时有一个解;

2有两个不同的解,此时有一个解

有两个不同的解,此时有一个解,

此时 ,不符合题意;

或是不符合题意;

所以只能是 解得

此时=-m,

此时

有两个不同的解,此时有一个解

此时 ,不符合题意;

或是不符合题意;

所以只能是解得

此时=

综上:的取值范围是

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若如图所示的程序框图输出的S是126,则n条件为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制如图所示频率分布直方图,已知中间三组的人数可构成等差数列.

(1)求的值;

2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列列联表,并判断是否有的把握认为消费金额与性别有关?

(3)分析人员对抽取对象每周的消费金额与年龄进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)

列联表

男性

女性

合计

消费金额

消费金额

合计

临界值表:

0.050

0.010

0.001

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )

A.各月最高气温平均值与最低气温平均值总体呈正相关

B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大

C.全年中各月最低气温平均值不高于10°C的月份有5

D.20187月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数().

1)讨论的单调性;

2)若对恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的极值点的个数;

2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,斜率为1的直线与椭圆交于两点,且,其中为坐标原点.

1)求椭圆的标准方程;

2)设过点且与直线平行的直线与椭圆交于两点,若点满足,且与椭圆的另一个交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数kk0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1ab0),AB为椭圆的长轴端点,CD为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案