精英家教网 > 高中数学 > 题目详情
5.已知数列{an}的前n项和Sn=$\frac{1}{2}$(an+1),
(1)求数列{an}的通项公式;
(2)比较4an与Sn的大小.

分析 (1)由n=1时,a1=S1,n>1时,an=Sn-Sn-1,结合等比数列的通项公式,即可得到所求通项;
(2)求出4an与Sn的,讨论n为奇数和偶数,化简整理,即可得到所求大小关系.

解答 解:(1)由Sn=$\frac{1}{2}$(an+1),可得
n=1时,a1=S1=$\frac{1}{2}$(1+a1),
解得a1=1,
n>1时,an=Sn-Sn-1=$\frac{1}{2}$(an+1)-$\frac{1}{2}$(an-1+1),
即有an=-an-1
则an=a1qn-1=(-1)n-1
(2)4an=4•(-1)n-1,Sn=$\frac{1}{2}$(1+(-1)n-1),
当n为奇数时,4an=4,Sn=$\frac{1}{2}$×2=1,
即有4an>Sn
当n为偶数时,4an=-4,Sn=$\frac{1}{2}$×0=0,
即有4an<Sn
综上可得,n为奇数,4an>Sn
n为偶数时,4an<Sn

点评 本题考查数列的通项的求法,注意运用数列的通项和前n项和的关系,考查数列的大小的比较,注意运用讨论的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知平面向量$\vec a=({1,2})$,$\vec b=({-2,k})$,若$\vec a∥\vec b$,则$|{3\vec a+\vec b}|$=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列命题正确的是:①③(写出所有命题的正确序号).
①函数y=sin($\frac{5π}{2}$-2x)是偶函数;
②函数y=sin(x+$\frac{π}{4}$)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函数;
③直线x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}$)图象的一条对称轴;
④函数y=cos(2x-$\frac{π}{3}$)的图象的一个对称中心是(-$\frac{π}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的方程为kx2+(4-k)y2=k+1(k∈R).
(1)若曲线C是椭圆,求实数k的取值范围;
(2)若曲线C是双曲线,且有一条渐近线的倾斜角为$\frac{π}{3}$,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=sinx-1的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A,B,C三点不共线,点O是平面ABC外的任意一点,若点P分别满足下列关系:
(1)$\overrightarrow{OA}$$+2\overrightarrow{OB}$=6$\overrightarrow{OP}$$-3\overrightarrow{OC}$;
(2)$\overrightarrow{OP}$$+\overrightarrow{OC}$=4$\overrightarrow{OA}$-$\overrightarrow{OB}$.
试判断点P是否与点A,B,C共面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为不共线的非零向量,如果$\overrightarrow{a}$=4$\overrightarrow{{e}_{1}}$-$\frac{2}{5}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$-$\frac{1}{10}$$\overrightarrow{{e}_{2}}$,试判断$\overrightarrow{a}$,$\overrightarrow{b}$是否共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作倾斜角为45°的直线l与双曲线右支交于A、B两点,当a≤|AB|≤4a时,双曲线C的离心率的取值范围为(  )
A.[$\frac{\sqrt{30}}{5}$,$\frac{\sqrt{6}}{2}$]B.(1,$\frac{\sqrt{6}}{2}$]C.(1,$\frac{\sqrt{30}}{5}$]D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出下列命题:
①将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆;
②若空间向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
③若空间向量$\overrightarrow{m}$,$\overrightarrow{n}$,$\overrightarrow{p}$满足$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则$\overrightarrow{m}$=$\overrightarrow{p}$;
④空间中任意两个单位向量必相等;
⑤零向量没有方向;
其中假命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案