精英家教网 > 高中数学 > 题目详情
4.设三棱柱ABC-A1B1C1的侧棱垂直于底面,$AB=AC=2,\;∠\;BAC=90°,\;A{A_1}=2\sqrt{2}$,且三棱柱的所有顶点都在同一球面上,则该球的表面积是16π.

分析 根据题意,可将棱柱ABC-A1B1C1补成长方体,长方体的对角线即为球的直径,从而可求球的表面积.

解答 解:∵三棱柱ABC-A1B1C1的侧棱垂直于底面,AB=AC=2,∠BAC=90°,AA1=2$\sqrt{2}$,
∴可将棱柱ABC-AA1B1C1补成长方体,长方体的对角线$\sqrt{4+4+8}$=4,即为球的直径,
∴球的直径为4,
∴球的表面积为4π×22=16π,
故答案为:16π.

点评 本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在长方形ABCD中,AE=EB,三角形BEF的面积占长方形ABCD面积的$\frac{3}{16}$,那么BF:FC=3:1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a,b,c分别为△ABC三个内角A,B,C的对边,$\frac{sinA}{a}$=$\frac{\sqrt{3}cosB}{b}$.
(Ⅰ)求角B;
(Ⅱ)求sinAcosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在平面直角坐标系xoy中,椭圆C的标准方程为$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1,直线l与x轴交于点E,与椭圆C交于A,B两点.
(1)若点E的坐标为$({\frac{{\sqrt{3}}}{2},0})$,点A在第一象限且横坐标为$\sqrt{3}$,连结点A与原点O的直线交椭圆C于另一点P,求△PAB的面积;
(2)是否存在点E,使得$\frac{1}{{E{A^2}}}+\frac{1}{{E{B^2}}}$为定值?若存在,请指出点E的坐标,并求出该定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设m∈R,过定点A的动直线x+my=0和过定点B的直线mx-y-m+3=0交于点P(x,y),则|PA|+|PB|的最大值是$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=ax3-3x2+1,若f(x)=0存在唯一正实数根x0,则a取值范围是(-∞,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.甲、乙两人参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,画出茎叶图如图所示,乙的成绩中有一个数个位数字模糊,在茎叶图中用c表示.(把频率当作概率)
(Ⅰ)假设c=5,现要从甲,乙两人中选派一人参加数学竞赛,从统计学的角度,你认为派哪位学生参加比较合适?
(Ⅱ)假设数字c的取值是随机的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=loga(x+1)+2(a>0且a≠1)恒过定点A,则A的坐标为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(sin$\frac{x}{2}$,$\frac{1}{2}$),$\overrightarrow{b}$=($\sqrt{3}$cos$\frac{x}{2}$-sin$\frac{x}{2}$,1),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,△ABC三个内角A,B,C的对边分别为a,b,c.
(1)求f(x)的单调递增区间:
(2)若f(B+C)=1,a=$\sqrt{3}$,b=1.求△ABC的面积S.

查看答案和解析>>

同步练习册答案