精英家教网 > 高中数学 > 题目详情

某企业生产某种商品吨,此时所需生产费用为()万元,当出售这种商品时,每吨价格为万元,这里为常数,
(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?
(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.

(1)100吨;(2)

解析试题分析:这是函数应用题问题,解决问题的方法是列出函数关系式,然后借助函数的性质得出结论.这种问题的函数式其实在题中已经有提示,我们只要充分利用题目提供的信息,就可以得到解法.显然本题要建立生产商品的平均费用与商品产量之间的函数式,已知条件是生产某种商品吨,此时所需生产费用为()万元,因此平均费用就是,这就是所求函数式;(2)当产量是120吨时企业利润最大,解决这个问题要建立利润与产量之间的函数式,从实际出发,我们知道利润等于收入减去成本,因此此题中利润,这是关于的二次函数,已知条件转化为当时,最大,且此时销售单价,故问题得解.
试题解析:(1)设生产平均费用为y元,(1分)
由题意可知y=;(5分)
当且仅当时等号成立,(6分)
所以这种商品的产量应为100吨.(7分)
(2)设企业的利润为S元,有题意可知(7分)

= (3分)
 又由题意可知120 (5分)
(6分)
        (7分)
考点:函数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,.
(Ⅰ)证明:
(Ⅱ)求证:在数轴上,介于之间,且距较远;
(Ⅲ)在数轴上,之间的距离是否可能为整数?若有,则求出这个整数;若没有,
说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长为20m的铁丝网,一边靠墙,围成三个大小相等、紧紧相连的长方形,那么长方形长、宽、各为多少时,三个长方形的面积和最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)已知函数
(Ⅰ)求函数的最小值;
(Ⅱ)求证:
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设函数是否存在“分界线”?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 
(1)求函数的解析式,并求它的单调递增区间;
(2)若有四个不相等的实数根,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.
(1)求这次行车总费用关于的表达式;
(2)当为何值时,这次行车的总费用最低,并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若不等式对一切恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当时的解析式为.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量毫克)与时间(小时)成正比;药物释放完毕后,的函数关系式为为常数),如图所示,根据图中提供的信息,回答下列问题:

(1)求从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室.那从药物释放开始,至少需要经过多少小时后,学生才能回到教室?

查看答案和解析>>

同步练习册答案