精英家教网 > 高中数学 > 题目详情
2.抛物线2y2+x=0的焦点坐标是:(-$\frac{1}{8}$,0),准线方程是:x=$\frac{1}{8}$.

分析 将抛物线化成标准方程得y2=-$\frac{1}{2}$x,根据抛物线的基本概念即可算出该抛物线的焦点坐标、准线方程.

解答 解:∵抛物线的方程为2y2+x=0,
∴化成标准方程,得y2=-$\frac{1}{2}$x,
由此可得抛物线的2p=$\frac{1}{2}$,得$\frac{p}{2}$=$\frac{1}{8}$
∴抛物线的焦点坐标为(-$\frac{1}{8}$,0),准线方程是x=$\frac{1}{8}$,
故答案为(-$\frac{1}{8}$,0),x=$\frac{1}{8}$.

点评 本题给出抛物线的方程,求抛物线的焦点坐标、准线方程,着重考查了抛物线的标准方程与简单几何性质等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知9x-12•3x+27≤0,求函数y=log22x-log2x+2的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴是短轴的两倍,点P($\sqrt{3}$,$\frac{1}{2}$)在椭圆上,不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为k1、k、k2,且k1、k、k2恰好构成等比数列,记△AOB的面积为S.
(1)求椭圆C的方程;
(2)试判断|OA|2+|OB|2是否为定值?若是,求出这个值;若不是,请说明理由?
(3)求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合M={(x,y)|x2+y2=1},N={(x,y)|x2+y2=4},集合M与N的关系是(  )
A.M=NB.M⊆N
C.N⊆MD.M,N不存在包含关系

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=lnx-mx,m∈R.
(1)求函数f(x)的单调区间;
(2)若m=0,求证:对于任意的0<x1<x2,恒有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}<\frac{1}{x_1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2,$AD=CD=\sqrt{7}$,$PA=\sqrt{3}$,∠ABC=120°,G为线段PC上的点.
(1)若G是PC的中点,
①求证:PA∥平面GBD
②求DG与平面APC所成的角的正切值;
(2)若G满足PC⊥面GBD,求$\frac{PG}{GC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线x=2ay2的准线方程是x=2,则a的值是(  )
A.$\frac{1}{16}$B.$-\frac{1}{16}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线x=4y2上一点P(m,1),焦点为F.则|PF|=(  )
A.m+1B.2C.$\frac{63}{16}$D.$\frac{65}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.双曲线C的中心在原点,右焦点为F($\frac{2\sqrt{3}}{3}$,0),一条渐近线方程为y=$\sqrt{3}$x,
(1)求双曲线C方程
(2)设直线L:y=kx+1与双曲线交于A,B两点,问:当k为何值时,以AB为直径的圆过原点?

查看答案和解析>>

同步练习册答案