精英家教网 > 高中数学 > 题目详情

【题目】2016年1月1日,我国全面实行二孩政策,某机构进行了街头调查,在所有参与调查的青年男女中,持“响应”“犹豫”和“不响应”态度的人数如下表所示:

响应

犹豫

不响应

男性青年

500

300

200

女性青年

300

200

300

根据已知条件完成下面的列联表,并判断能否有的把握认为犹豫与否与性别有关?请说明理由.

犹豫

不犹豫

总计

男性青年

女性青年

总计

1800

参考公式:

参考数据:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】见解析

【解析】

找出男、女青年持 “犹豫”态度的人数,可完成2×2列联表,计算K2,对照临界值得出结论;

由题意知,男性青年持 “犹豫”态度的人数为300,女性青年持 “犹豫”态度的人数为200,由此完成列联表如下

犹豫

不犹豫

总计

男性青年

300

700

1000

女性青年

200

600

800

总计

500

1300

1800

结合列联表的数据计算的观测值

所以有的把握认为犹豫与否与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2) 若函数有两个零点 ,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)若函数在区间(1e)存在零点,求实数a的取值范围; 

(Ⅱ)若对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为坐标原点,焦点轴的正半轴上,过焦点作斜率为的直线交抛物线两点,且,其中为坐标原点.

(1)求抛物线的方程;

(2)设点,直线分别交准线于点,问:在轴的正半轴上是否存在定点,使,若存在,求出定点的坐标,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1-BCDE.

(Ⅰ)证明:CD⊥平面A1OC;

(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为36,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的年收益与投资额成正比,投资股票等风险型产品的年收益与投资额的算术平方根成正比.已知投资1万元时两类产品的年收益分别为0.125万元和0.5万元(如图).

1)分别写出两种产品的年收益与投资额的函数关系式;

2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线内一定点,过作两条直线交抛物线于,且分别是线段的中点.

(1)当时,求△的面积的最小值;

(2)若,证明:直线过定点,并求定点坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,点中点,连接交于点,点中点.

1)求证:平面

2)求证:平面平面

3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,正项数列的前项的积为,且,当时, 都成立.

1)若 ,求数列的前项和;

2)若 ,求数列的通项公式.

查看答案和解析>>

同步练习册答案