精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的右焦点为,过的直线交于两点,点的坐标为.

(1)当轴垂直时,求直线的方程;

(2)设为坐标原点,证明:.

【答案】(1) AM的方程为.

(2)证明见解析.

【解析】分析:(1)首先根据轴垂直,且过点,求得直线l的方程为x=1,代入椭圆方程求得点A的坐标为利用两点式求得直线的方程;

(2)分直线lx轴重合、lx轴垂直、lx轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.

详解:(1)由已知得l的方程为x=1.

由已知可得,点A的坐标为.

所以AM的方程为.

(2)当lx轴重合时,.

lx轴垂直时,OMAB的垂直平分线,所以.

lx轴不重合也不垂直时,设l的方程为

直线MAMB的斜率之和为.

.

代入

.

所以,.

.

从而MAMB的倾斜角互补所以.

综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AB=4,AA1=2,点E1在棱C1D1上,且D1E1=3。

(I)在棱CD上确定一点E,使得直线EE1∥平面D1DB,并写出证明过程;

(II)求证:平面A1ACC1⊥平面D1DB;

(III)若动点F在正方形ABCD内,且AF=2,请说明点F的轨迹,试求E1F长度的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)定义在区间(0,+∞)上,且f(1)=0,导函数f′(x)=,函数g(x)=f(x)+f′(x).

(1)求函数g(x)的最小值;

(2)是否存在x0>0,使得不等式|g(x)-g(x0)|<对任意x>0恒成立?若存在,请求出x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对边分别是a,b,c,若sin(A﹣B)= sinAcosB﹣ sinBcosA.
(1)求证:A=B;
(2)若A= ,a= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和Sn满足Sn,且a1,a2+1,a3成等差数列.

(1)求数列{an}的通项公式;

(2)记数列的前n项和为Tn,求证: Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?

优秀

合格

合计

大学组

中学组

合计

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数.

(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6.在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为,在选出的6名良好等级的选手中任取一名,记其编号为,求使得方程组有唯一一组实数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式组表示的平面区域为,若函数的图象上存在区域内的点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(a>0,a≠1)的反函数的图象经过点( ).若函数g(x)的定义域为R,当x∈[﹣2,2]时,有g(x)=f(x),且函数g(x+2)为偶函数,则下列结论正确的是(
A.g(π)<g(3)<g(
B.g(π)<g( )<g(3)??
C.g( )<g(3)<g(π)
D.g( )<g(π)<g(3)

查看答案和解析>>

同步练习册答案