精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sin(α+
π
6
),3),
b
=(1,4cosα),α∈(0,π).
(1)若
a
b
,求tanα的值;
(2)若
a
b
,求α的值.
考点:平面向量共线(平行)的坐标表示,数量积判断两个平面向量的垂直关系
专题:平面向量及应用
分析:(1)由向量垂直结合向量的坐标表示得到sin(α+
π
6
)+12cosα=0
,展开两角和的余弦后整理求得tanα;
(2)由
a
b
,得4cosαsin(α+
π
6
)=3
,展开两角和的余弦后整理求得sin(2α+
π
6
)=1
.再由α的范围求得α值.
解答: 解:(1)
a
=(sin(α+
π
6
),3),
b
=(1,4cosα),
a
b
,∴sin(α+
π
6
)+12cosα=0

3
2
sinα+
1
2
cosα+12cosα=0
,即
3
2
sinα+
25
2
cosα=0

又cosα≠0,∴tanα=-
25
3
3

(2)若
a
b
,则4cosαsin(α+
π
6
)=3

4cosα(
3
2
sinα+
1
2
cosα)=3
,∴
3
sin2α+cos2α=3

3
sin2α+cos2α=2

sin(2α+
π
6
)=1

∵α∈(0,π),∴2α+
π
6
(
π
6
13π
6
)

2α+
π
6
=
π
2
,即α=
π
6
点评:平行与垂直问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若
a
=(a1,a2),
b
=(b1,b2),则
a
b
?a1a2+b1b2=0,
a
b
?a1b2-a2b1=0,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C:x2+(y-3)2=2,点A是x轴上的一个动点,AP,AQ分别切圆C于P,Q两点,则线段PQ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4-x)=f(x).现有以下三种叙述:
①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数
其中正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x-1>lnx.命题q:?x∈R,
x
>0,则(  )
A、命题p∨q是假命题
B、命题p∧q是真命题
C、命题p∧(¬q)是真命题
D、命题p∨(¬q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,an.Sn满足(t-1)Sn=t(an-2)(t为常数,t≠0且t≠1).
(1)求数列{an}的通项公式;
(2)设bn=(-an)•log3(1-Sn),当t=
1
3
时,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,已知D点在直线A1B上,AD⊥平面A1BC.
(Ⅰ)求证:BC⊥AB;
(Ⅱ)若BC=2,AB=4,AD=2
3
,P为AC边的中点,求三棱锥P-A1BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-3,2]上随机选取一个数x,使得函数y=
x+1
有意义的概率为(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an=
n-1
n
an-1(n≥2),则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
2+i
2-i
(i为虚数单位)的虚部为(  )
A、
3
5
B、
4
5
C、
3
5
i
D、
4
5
i

查看答案和解析>>

同步练习册答案