精英家教网 > 高中数学 > 题目详情

在极坐标系中,已知曲线

交于点

(I)求点的极坐标;

(II)若动直线过点,且与曲线交于两个不同的点的最小值.

 

【答案】

(I)点的极坐标为

(II)当时,有最小值

【解析】(I)先求出曲线C1和曲线C2的普通方程,然后联立解方程组即可得到点M的直角坐标,再化成极坐标.

(II) 设直线的参数方程为为参数),代入曲线的直角坐标方程并整理得

然后根据参数t的几何意义可知再借助韦达定理转化为关于的三角函数来求最值.

解:(I)由解得点的直角坐标为因此点的极坐标为

(II)设直线的参数方程为为参数),代入曲线的直角坐标方程并整理得

设点对应的参数分别为

时,有最小值

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在极坐标系中,已知曲线C的方程是ρ=
32-cosθ
,过极点作直线l与极轴成60°角,设直线l交曲线C于P,Q两点,则线段PQ的长等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A.(不等式选做题)不等式|x-1|+|x+2|<a的解集不是空集,则实数a的取值范围为
 

B.(几何证明选做题)如图,割线PBC经过圆心O,OB=PB=1,OB绕点O逆时针旋转120°到OD,连PD交圆O于点E,则PE=
 

C.(极坐标系与参数方程选做题)在极坐标系中,已知曲线p=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x+1|-|x-3|≥0的解集是
{x|x≥1}
{x|x≥1}

B.(几何证明选做题) 如图,⊙O的直径AB=6cm,P是延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,若∠CAP=30°,则PC=
3
3
3
3

C.(极坐标系与参数方程选做题)在极坐标系中,已知曲线ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,则实数a的值为
2或-8
2或-8

查看答案和解析>>

科目:高中数学 来源: 题型:

(极坐标与参数方程)在极坐标系中,已知曲线C的方程是ρ=4sinθ,过点(4,
π
6
)
作曲线C的切线,则切线长等于
2
2
2
2

查看答案和解析>>

同步练习册答案