精英家教网 > 高中数学 > 题目详情

【题目】圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0),B(3,0)两点,则圆的方程为( )
A.(x-2)2+(y+1)2=2
B.(x+2)2+(y-1)2=2
C.(x-1)2+(y-2)2=2
D.(x-2)2+(y-1)2=2

【答案】D
【解析】解答:所求圆与x轴交于A(1,0),B(3,0)两点,故线段AB的垂直平分线x=2过所求圆的圆心,又所求圆的圆心在直线2x-3y-1=0上,所以两直线的交点坐标即为所求圆的圆心坐标,解之得圆心坐标为(2,1),进一步可求得半径为 ,所以圆的标准方程为(x-2)2+(y-1)2=2,选D.分析:本题主要考查了圆的标准方程,解决问题的关键是根据所给直线与点的关系得到所求圆的圆心坐标与半径即可.
【考点精析】本题主要考查了圆的标准方程的相关知识点,需要掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有下列命题:
①幂函数f(x)= 的单调递减区间是(﹣∞,0)∪(0,+∞);
②若函数f(x+2016)=x2﹣2x﹣1(x∈R),则函数f(x)的最小值为﹣2;
③若函数f(x)=loga|x|(a>0,a≠1)在(0,+∞)上单调递增,则f(﹣2)<f(a+1);
④若f(x)= 是(﹣∞,+∞)上的减函数,则a的取值范围是( );
⑤既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R).
其中正确命题的序号有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是连续的偶函数,且当x>0时,f(x)是单调函数,则满足f(x)=f( )的所有x之和为(
A.﹣4031
B.﹣4032
C.﹣4033
D.﹣4034

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的定义域,判断并证明的奇偶性;

(2)判断函数的单调性;

(3)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是平面内互相垂直的两条直线,它们的交点为A,异于点A的两动点B、C分别在 上,且BC= ,则过A、B、C三点圆的面积为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足 <0,其中a>0,命题q:实数x满足
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧棱垂直于底面, 是棱的中点.

证明:平面⊥平面

(Ⅱ)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)讨论函数的单调性;

(2)若,函数上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中.

(1)当时,求函数的值域;

(2)若对任意,均有,求的取值范围;

(3)当时,设,若的最小值为,求实数的值.

查看答案和解析>>

同步练习册答案