A. | (-∞,-2) | B. | $(1+2\sqrt{2},+∞)$ | C. | $(-∞,-2]∪[1+2\sqrt{2},+∞)$ | D. | $(-∞,-2)∪(1+2\sqrt{2},+∞)$ |
分析 首先根据函数的表达式画出函数的图象,从而根据图象判断函数与直线的公共点的情况,最后结合两曲线相切与方程有唯一解的关系即可求得实数a的取值范围.
解答 解:画出函数$g(x)=\frac{2}{x}+1$和y=|x-a|的图象,
(如图)
由图可知,当且仅当直线y=a-x与函数y=$\frac{2}{x}$的图象相切时,$\left\{\begin{array}{l}{y=\frac{2}{x}+1}\\{y=|x-a|}\end{array}\right.$有2解,∴此时a>2,
x<a,y=a-x代入y=$\frac{2}{x}+1$,可得:
x2+(1-a)x+2=0,
△=(1-a)2-8=0,解得a=1+2$\sqrt{2}$,要有3个交点,可得a>1+2$\sqrt{2}$,
函数y=$\frac{2}{x}+1$和y=|x-a|的图象有三个不同的公共点,则实数a的取值范围是a<-2.
综上a$∈(-∞,-2)∪(1+2\sqrt{2},+∞)$.
故选:D.
点评 本题主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,本题由于使用了数形结合的方法,使得问题便迎刃而解,且解法简捷.
科目:高中数学 来源: 题型:选择题
A. | {1,2,3,4} | B. | {2,4,6,8} | C. | {1,2,4,8} | D. | {2,4,8} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {0,1} | B. | {2} | C. | {1,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,e) | B. | [e,+∞) | C. | [$\frac{3}{2e}$,3] | D. | (2,e] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com