精英家教网 > 高中数学 > 题目详情

已知点F1(– 3,0)和F2(3,0),动点P到F1、F­2的距离之差为4,则点P的轨迹方程为

A.                     B.

C.                     D.

 

【答案】

B

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点F1(-
3
,0),F2(
3
,0)
,又P(x,y)是曲线
|x|
2
+
|y|
1
=1
上的点,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F1、F2分别是椭圆
x
2
 
a2
+
y
2
 
b
2
 
=1(a>b>0)
的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,若△ABF2是锐角三角形,则该椭圆的离心率e的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F1、F2为双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点,P为右支上一点,点P到右准线的距离为d,若|PF1|、|PF2|、d依次成等差数列,则此双曲线的离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)已知点F1、F2分别是双曲线
x2
a2
-
y2
b2
=1的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若A、B和双曲线的一个顶点构成的三角形为锐角三角形,则该双曲线的离心率e的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F1,F2为双曲线C:x2-
y2
b2
=1(b>0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线于点M,且∠MF1F2=30°,圆O的方程为x2+y2=b2
(1)求双曲线C的方程;
(2)过圆O上任意一点Q(x0,y0)作切线l交双曲线C于A,B两个不同点,AB中点为M,求证:|AB|=2|OM|;
(3)过双曲线C上一点P作两条渐近线的垂线,垂足分别是P1和P2,求
PP1
PP2
的值.

查看答案和解析>>

同步练习册答案