【题目】已知椭圆:的两个焦点分别为,且椭圆经过点.
(1)求椭圆的离心率;
(2)过点的直线与椭圆相交于两点,且,求直线的方程.
【答案】(1) (2) 或
【解析】
试题分析:(Ⅰ)利用椭圆定义求出长轴长,则离心率可求;(Ⅱ)分类设出直线l的方程,斜率不存在时极易验证不合题意,斜率存在时,联立直线方程和椭圆方程,利用根与系数关系得到两交点P,Q的横坐标的和与积,由得其数量积等于0,代入坐标后即可计算k的值,则直线l的方程可求
试题解析:(1)
(写出距离公式可得1分,求得得1分,待定系数法也可以)……2分
所以,.又由已知,, ……3分所以椭圆C的离心率 …4分
(2)由(1)知椭圆C的方程为.……5分
当直线的斜率不存在时,其方程为,不妨取;
此时,
,不合题意,舍去……6分
当直线的斜率存在时,设直线的方程为.由……7分
得.……8分 设,则
因为,所以,即
……10分
, 解得,即.…11分
故直线的方程为或. ……12分
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).
(1)求曲线的直角坐标方程和直线的的普通方程;
(2)设点,若直线与曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,离心率,点在椭圆上.
(1)求椭圆的方程;
(2)设过点且不与坐标轴垂直的直线交椭圆于、两点,线段的垂直平分线与轴交于点,求点的横坐标的取值范围;
(3)在第(2)问的条件下,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.
(I)求乙得分的分布列和数学期望;
(II)求甲、乙两人中至少有一人入选的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如下表:
年龄(岁) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高(cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高关于年龄的线性回归方程;
(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos xsin 2x,下列结论中正确的是________(填入正确结论的序号).
①y=f(x)的图象关于点(2π,0)中心对称;
②y=f(x)的图象关于直线x=π对称;
③f(x)的最大值为;
④f(x)既是奇函数,又是周期函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的方程为+=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)( )
A.必在圆x2+y2=2内
B.必在圆x2+y2=2外
C.必在圆x2+y2=1外
D.必在圆x2+y2=1与圆x2+y2=2形成的圆环之间
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com