精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知直三棱柱的底面为等腰直角三角形,点为线段的中点.

1)探究直线与平面的位置关系,并说明理由;

2)若,求三棱锥的体积.

【答案】1//平面,证明见详解;(2.

【解析】

1)连接于点,取中点为,通过证明四边形为平行四边,即可由线线平行推证线面平行;

2)转换三棱锥顶点至,根据棱锥的体积公式即可容易求得.

1//平面,理由如下:

连接,设

因为四边形为平行四边形,

所以的中点.

的中点,连接,如下图所示:

//,且

由已知得//,且

所以//,且

所以四边形为平行四边形,

所以//,即//

因为平面平面

所以//平面

2)由(1)可知,//平面

所以点到平面的距离等于点到平面的距离,

所以

易知平面,连接

因为

所以

所以三棱锥的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学为了调查该校学生性别与身高的关系,对该校1000名学生按照的比例进行抽样调查,得到身高频数分布表如下:

男生身高频率分布表

男生身高

(单位:厘米)

频数

7

10

19

18

4

2

女生身高频数分布表

女生身高

(单位:厘米)

频数

3

10

15

6

3

3

1)估计这1000名学生中女生的人数;

2)估计这1000名学生中身高在的概率;

3)在样本中,从身高在的女生中任取2名女生进行调查,求这2名学生身高在的概率.(身高单位:厘米)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

如图,已知抛物线,过点任作一直线与相交于两点,过点轴的平行线与直线相交于点为坐标原点).

(1)证明:动点在定直线上;

(2)的任意一条切线(不含轴)与直线相交于点,与(1)中的定直线相交于点,证明:为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数).以原点为极点,x轴的非负半轴为极轴,建立极坐标系.

1)求曲线C的极坐标方程;

2)直线t为参数)与曲线C交于AB两点,求最大时,直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足,且.

1)求的解析式;

2)设函数,当时,求的最小值;

3)设函数,若对任意,总存在,使得成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)过点.

1)求椭圆的方程;

2)设过椭圆的右焦点,且倾斜角为的直线和椭圆交于两点,对于椭圆上任一点,若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线的焦点,过的动直线交抛物线两点.当直线与轴垂直时,

1)求抛物线的方程;

2)设直线的斜率为1且与抛物线的准线相交于点,抛物线上存在点使得直线的斜率成等差数列,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:),经统计,其高度均在区间内,将其按分成6组,制成如图所示的频率分布直方图.其中高度为及以上的树苗为优质树苗.

试验区

试验区

合计

优质树苗

20

非优质树苗

60

合计

1)求图中的值,并估计这批树苗高度的中位数和平均数(同一组数据用该组区间的中点值作代表);

2)已知所抽取的这120棵树苗来自于两个试验区,部分数据如上列联表:将列联表补充完整,并判断是否有的把握认为优质树苗与两个试验区有关系,并说明理由.

参考数据:

0.15

010

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆右焦点,离心率为,过作两条互相垂直的弦,设中点分别为

(1) 求椭圆的标准方程;

(2)求以为顶点的四边形的面积的取值范围;

查看答案和解析>>

同步练习册答案