精英家教网 > 高中数学 > 题目详情
10.已知在多面体SP-ABCD中,底面ABCD为矩形,AB=PC=1,AD=AS=2,且AS∥CP且AS⊥面ABCD,E为BC的中点.
(1)求证:AE∥面SPD;
(2)求二面角B-PS-D的余弦值.

分析 (1)取SD的中点F,连接PF,过F作FQ⊥面ABCD,交AD于Q,连接QC,推导出CPFQ为平行四边形,四边形AECQ为平行四边形,从而AE∥PF,由此能证明AE∥面SPD.
(2)分别以AB,AD,AS所在的直线为x,y,z轴,以A点为坐标原点建立空间直角坐标系A-xyz,能求出二面角B-PS-D的余弦值.

解答 证明:(1)取SD的中点F,连接PF,过F作FQ⊥面ABCD,交AD于Q,连接QC,
∵AS⊥面ABCD,∴AS∥FQ,QF为SD的中点,∴Q为AD的中点,
FQ=$\frac{1}{2}$AS,PC=$\frac{1}{2}$AS,∴FQ=PC,且FQ∥PC,
∴CPFQ为平行四边形,∴PF∥CQ,
又∵AQ∥∥EC,AQ=EC,∴四边形AECQ为平行四边形,∴AE∥CQ,
又PF∥CQ,∴AE∥PF,
∴PF?面SPD,AE?面SPD,∴AE∥面SPD.
解:(2)分别以AB,AD,AS所在的直线为x,y,z轴,
以A点为坐标原点建立空间直角坐标系A-xyz,
则B(1,0,0),D(0,2,0),S(0,0,2),P(1,2,1),
$\overrightarrow{SP}$=(1,2,-1),$\overrightarrow{SB}$=(1,0,-2),$\overrightarrow{SD}$=(0,2,-2),
设面BPS与面SPD的法向量分别为$\overrightarrow{m}$=(x,y,z),$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{SP}•\overrightarrow{m}=0}\\{\overrightarrow{SB}•\overrightarrow{m}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{x+2y-z=0}\\{x-2z=0}\end{array}\right.$,取z=2,得$\overrightarrow{m}$=(4,-1,2),
$\left\{\begin{array}{l}{\overrightarrow{SP}•\overrightarrow{n}=0}\\{\overrightarrow{SD}•\overrightarrow{n}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{a+2b-c=0}\\{2b-2c=0}\end{array}\right.$,取c=1,得$\overrightarrow{n}$=(-1,1,1),
两平面的法向量所成的角的余弦值为:
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{4×(-1)+(-1)×1+2×1}{\sqrt{21}•\sqrt{3}}$=-$\frac{\sqrt{7}}{7}$.
∵二面角B-PS-D为钝角,∴该二面角的余弦值为-$\frac{\sqrt{7}}{7}$.

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)令g(x)=f(x)-(ax-1),求函数g(x)的单调区间;
(2)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.要在半径OA=90cm的圆形木板上截取一块扇形,使其弧$\widehat{AB}$的长为30πcm,则圆心角∠AOB=$\frac{π}{3}$(填弧度)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中,正确的命题个数是(  )
①用相关系数r来判断两个变量的相关性时,r越接近0,说明两个变量有较强的相关性;
②将一组数据中的每个数据都加上同一个非零常数后,期望改变,方差不变;
③某厂生产的零件外直径x~N(3,1),且p(2≤x≤4)=0.68,则p(x<4)=0.84
④用数学归纳法证明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<$\frac{13}{14}$(n≥2,n∈{N*)的过程中,由n=k递推到n=k+1时不等式的左边增加项为$\frac{1}{2k+1}$-$\frac{1}{2k+2}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图4,已知正三棱柱ABC-A1B1C1,延长BC至D,使C为BD的中点.
(1)求证:平面AC1D⊥平面AA1B;
(2)若AC=2,AA1=4,求二面角C1-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在R上的偶函数,f(2)=0,$\frac{xf′(x)-f(x)}{{x}^{2}}$<0(x>0),则不等式xf(x)<0的解集(-2,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P.
(Ⅰ)若PD=8,CD=1,PO=9,求⊙O的半径;
(Ⅱ)若E为⊙O上的一点,$\widehat{AE}=\widehat{AC}$,DE交AB于点F,求证:PF•PO=PA•PB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设曲线C:y=alnx(a≠0)在点T(x0,alnx0)处的切线与x轴交于点A(f(x0),0),函数g(x)=$\frac{2x}{1+x}$.
(1)求f(x0),并求出f(x)在(0,+∞)上的极值;
(2)设在区间(0,1)上,方程f(x)=k的实数解为x1,g(x)=k的实数解为x2,比较x2与x1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a,b,c为实数,下列结论正确的是(  )
A.若a>b,c>d,则ac>bdB.若a<b<0,则a2>ab>b2
C.若a<b<0,则$\frac{1}{a}<\frac{1}{b}$D.若a<b<0,则$\frac{b}{a}>\frac{a}{b}$

查看答案和解析>>

同步练习册答案