精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)是定义在R上的奇函数,当x>0时,.

1)求f(x)的解析式;

2)设x[1,2]时,函数,是否存在实数m使得g(x)的最小值为6,若存在,求m的取值;若不存在,说明理由.

【答案】12.

【解析】

1)设,根据计算,利用奇偶性即可求解函数解析式;

2)通过换元,问题转化为二次函数h (t)[2 4]上的最小值为6,再通过分类讨论得出结论.

1)设

x>0时,可知,

fx)为R上的奇函数,

于是

故当时,

时,由知,

综上知

2)由(1)知,x[1,2]时,

函数g(x)的最小值为6,即上的最小值为6

,即m>﹣5时,函数ht)在[24]上为增函数,

于是htminh2)=6,此时存在满足条件的实数m>﹣5

,即﹣9m≤﹣5时,,解得,此时满足条件;

,即m<﹣9时,函数ht)在[24]上为减函数,

于是htminh4)=2m+206,解得,此时不存在满足条件的实数m

综上,存在使得函数gx)的最小值为6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:

年龄段

人数(单位:人)

180

180

160

80

约定:此单位45岁~59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.

(1)抽出的青年观众与中年观众分别为多少人?

(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列列联表,并回答能否有的把握认为年龄层与热衷关心民生大事有关?

热衷关心民生大事

不热衷关心民生大事

总计

青年

12

中年

5

总计

30

(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2人能胜任才艺表演的概率是多少?

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:

甲公司

乙公司

职位

A

B

C

D

职位

A

B

C

D

月薪/元

6000

7000

8000

9000

月薪/元

5000

7000

9000

11000

获得相应职位概率

0.4

0.3

0.2

0.1

获得相应职位概率

0.4

0.3

0.2

0.1

(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;

(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布:

选择意愿

人员结构

40岁以上(含40岁)男性

40岁以上(含40岁)女性

40岁以下男性

40岁以下女性

选择甲公司

110

120

140

80

选择乙公司

150

90

200

110

若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k15.5513,测得出选择意愿与年龄有关系的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,四边形是边长为的正方形,平面⊥平面.

(Ⅰ) 求证:

(Ⅱ) 求证:平面⊥平面

(Ⅲ) 在线段上是否存在点,使得⊥平面? 说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四本不同的书分给三位同学,每人至少分到一本,每本书都必须有人分到,不能同时分给同一个人,则不同的分配方式共有__________种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率是椭圆上一点.

1)求椭圆的方程;

2)若直线的斜率为,且直线交椭圆两点,点关于原点的对称点为,点是椭圆上一点,判断直线的斜率之和是否为定值,如果是,请求出此定值,如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处有极值

1)求的解析式;

2)若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的不恒为零的函数,对于任意实数满足: ,, 考查下列结论:① ;②为奇函数;③数列为等差数列;④数列为等比数列.

以上结论正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,线段交于点,在的延长线上任取一点,得凸四边形,求证:的外接圆三圆共点。

查看答案和解析>>

同步练习册答案