【题目】如图,过抛物线焦点的直线与抛物线交于(其中点在轴的上方)两点.
(1)若线段的长为3,求到直线的距离;
(2)证明:为钝角三角形;
(3)已知且,求三角形的面积的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是正方形,且,平面平面,,点为线段的中点,点是线段上的一个动点.
(Ⅰ)求证:平面平面;
(Ⅱ)当点是线段上的中点时,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
(2)从调查的100人中年龄在15~25,25~35两组按分层抽样的方法抽取6人参加某项活动现从这6人中随机抽2人,求这2人中至少1人的年龄在25~35之间的概率.
参考数据:
其中n=a+b+c+d
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如图所示的列联表.经计算的观测值,则可以推断出( )
满意 | 不满意 | |
男 | 30 | 20 |
女 | 40 | 10 |
0.100 | 0.050 | 0.010 | |
2.706 | 3.841 | 6.635 |
A.该学校男生对食堂服务满意的概率的估计值为
B.调研结果显示,该学校男生比女生对食堂服务更满意
C.有95%的把握认为男、女生对该食堂服务的评价有差异
D.有99%的把握认为男、女生对该食堂服务的评价有差异
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率e满足,右顶点为A,上顶点为B,点C(0,-2),过点C作一条与y轴不重合的直线l,直线l交椭圆E于P,Q两点,直线BP,BQ分别交x轴于点M,N;当直线l经过点A时,l的斜率为.
(1)求椭圆E的方程;
(2)证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,,,O为AC的中点.
(1)证明:平面ABC;
(2)若点M在棱BC上,且,求点C到平面POM的距离.
(3)若点M在棱BC上,且二面角为30°,求PC与平面PAM所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,,,,,,得到如图所示的频率分布直方图.
(1)求的值;
(2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(3)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为等差数列的公差,数列的前项和,满足(),且,若实数(,),则称具有性质.
(1)请判断、是否具有性质,并说明理由;
(2)设为数列的前项和,若是单调递增数列,求证:对任意的(,),实数都不具有性质;
(3)设是数列的前项和,若对任意的,都具有性质,求所有满足条件的的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com