精英家教网 > 高中数学 > 题目详情
如图,在梯形ABCD中,AB∥CD,AB=a,CD=b(a>b).若EF∥AB,EF到CD与AB的距离之比为m:n,则可推算出:EF=
ma+nb
m+n
,用类比的方法,推想出下列问题的结果,在上面的梯形ABCD中,延长梯形的两腰AD和BC交于O点,设△OAB,△OCD的面积分别为S1,S2,EF∥AB,,且EF到CD与AB的距离之比为m:n,则△OEF的面积S0与S1,S2的关系是(  )
分析:在平面几何中的进行几何性质类比推理时,我们常用的思路是:由平面几何中线段的性质,类比推理平面几何中面积的性质;故由:EF=
ma+nb
m+n
,类比到S0与S1,S2的关系是:
S0
=
m
S1
+n
S2
m+n
解答:解:在平面几何中类比几何性质时,
一般为:由平面几何点的性质,类比推理线的性质;
由平面几何中线段的性质,类比推理空间几何中面积的性质;
故由:“EF=
ma+nb
m+n
”,
类比到关于△OEF的面积S0与S1,S2的结论是:
S0
=
m
S1
+n
S2
m+n

故选C.
点评:本题考查的知识点是类比推理,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.
(1)求证:BC⊥平面ACFE;
(2)当EM为何值时,AM∥平面BDF?证明你的结论;
(3)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,BD与AC相交于O,过O的直线分别交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,则EF=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在梯形ABCD中,对角线AC和BD交于点O,E、F分别是AC和BD的中点,分别写出
(1)图中与
EF
CO
共线的向量;
(2)与
EA
相等的向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四边形ACFE为矩形,平面ACFE上平面ABCD,CF=1.
(I)求证:BC⊥平面ACFE;
(II)若M为线段EF的中点,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),求cosθ.

查看答案和解析>>

同步练习册答案