精英家教网 > 高中数学 > 题目详情
17.已知数列{an}中,a1=2,n≥2时,an=$\frac{7{a}_{n-1}-3}{3{a}_{n-1}+1}$,则使得an≥$\frac{13}{11}$成立的最大正整数n=7.

分析 先计算出前几项,再进行归纳猜想,证明,由此求出数列{an}的通项公式,结合an≥$\frac{13}{11}$,求得最大正整数n的值.

解答 解:已知数列{an}中a1=2,当n≥2时,an=$\frac{7{a}_{n-1}-3}{3{a}_{n-1}+1}$,
∴a2=$\frac{11}{7}$,
a3=$\frac{7}{5}$=$\frac{14}{10}$,
a4=$\frac{17}{13}$

猜想an=$\frac{3n+5}{3n+1}$.
①当n=1时,显然成立.
②假设n=k(k≥1)时成立,即ak=$\frac{3k+5}{3k+1}$,
则当n=k+1时,ak+1=$\frac{7{a}_{k}-3}{3{a}_{k}+1}$=$\frac{3k+11}{3k+7}$=$\frac{3(k+1)+5}{3(k+1)+3}$.
由①②知,an=$\frac{3n+5}{3n+1}$.
由an≥$\frac{13}{11}$,
得$\frac{3n+5}{3n+1}$$≥\frac{13}{11}$.
即$n≤\frac{42}{6}$.
∵n为正整数,
∴n的最大值为7.
故答案为:7.

点评 本题考查数列的递推公式的应用,解题时注意合理地进行猜想和数学归纳法的灵活运用,考查了等比关系的确定,训练了不等式的解法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设全集U=R,集合M={x|x2+x-2>0},N={x|{2x-1≤$\frac{1}{2}$},则(∁UM)∩N=(  )
A.[-2,0]B.[-2,1]C.[0,1]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果函数y=$\frac{1}{2}$sinωx在区间[-$\frac{π}{8}$,$\frac{π}{12}$]上单调递减,那么ω的取值范围为(  )
A.[-6,0)B.[-4,0)C.(0,4]D.(0,6]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知命题p:a≥2;命题q:对任意实数x∈[-1,1],关于x的不等式x2-a≤0恒成立,若p且q是真命题,则实数a的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于非零复数a,b,c,有以下七个命题:
①a+$\frac{1}{a}$≠0;
②若a=-$\overline{a}$,$\overline{a}$为a的共轭复数,则a为纯虚数;
③(a+b)2=a2+2ab+b2
④若a2=ab,则a=b;
⑤若|a|=|b|,则a=±b;
⑥若a2+b2+c2>0,则a2+b2>-c2
⑦若a2+b2>-c2,则a2+b2+c2>0.
其中,真命题的个数为(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=-2x2+ax-lnx(a∈R),g(x)=$\frac{ex}{{e}^{x}}$+3.
(I)若函数f(x)在定义域内单调递减,求实数a的取值范围;
(II)若对任意x∈(0,e),都有唯一的xo∈[e-4,e],使得g(x)=f(xo)+2xo2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)是定义在R上的奇函数,f(1)=0,$\frac{xf′(x)-f(x)}{{x}^{2}}$>0(x>0),则不等式x2f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如表是我国一个工业城市每年中度以上污染的天数,由于以前只注重经济发展,没有过多的考虑工业发展对环境的影响,近几年来,该市加大了对污染企业的治理整顿,环境不断得到改善.
年份(x)2010年2011年2012年2013年2014年
中度以上污染的天数(y)9074625445
(1)在以上5年中任取2年,至少有1年中度以上污染的天数小于60天的概率有多大;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(3)按照环境改善的趋势,估计2016年中度以上污染的天数.

查看答案和解析>>

同步练习册答案