精英家教网 > 高中数学 > 题目详情

【题目】如图所示,有两条相交成60°角的直线,交点为.甲、乙分别在上,起初甲离,乙离,后来甲沿的方向,乙沿的方向,同时以的速度步行.求:

1)起初两人的距离是多少?

2后两人的距离是多少?

3)什么时候两人的距离最短?

【答案】12小时后,甲乙两人的距离为3时两人的距离最短,最短距离为

【解析】

连接AB构成,再用由余弦定理写出AB(CD)的表达式,

2)中由于甲先到达O点,所以分类讨论,还是

(3)将二次函数表达式化成,求解就容易了。

解:设甲、乙两人起初所在位置分别为,连接

1)在中,由余弦定理,得……3

2)设小时后,甲由运动到,乙由运动到,连接

时,

……7

时,在中,

……11

小时后,甲乙两人的距离为……12

3

时两人的距离最短,最短距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(c为常数),且f(1)=0.

(1)求c的值;

(2)证明函数f(x)在[0,2]上是单调递增函数;

(3)已知函数g(x)=f(ex),判断函数g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2014福建)在下列向量组中,可以把向量 =(3,2)表示出来的是( )
A.=(0,0), =(1,2)
B.=(﹣1,2), =(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.

(1)求证:AB⊥CD;
(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线E: =1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.

(1)求双曲线E的离心率;
(2)如图,O为坐标原点,动直线l分别交直线l1 , l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在 R 上的奇函数 f (x) ,设其导函数为 f x ,当 x ,0时,恒有xf x f x 0 ,令 F x xf x则满足 F(3) F 2x 1 的实数 x 的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);

场次

投篮次数

命中次数

场次

投篮次数

命中次数

主场1

22

12

客场1

18

8

主场2

15

12

客场2

13

12

主场3

12

8

客场3

21

7

主场4

23

8

客场4

18

15

主场5

24

20

客场5

25

12


(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;
(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;
(3)记 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与 的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是(

A.k≤6
B.k≤7
C.k≤8
D.k≤9

查看答案和解析>>

同步练习册答案