【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD= AD,AE⊥PC于点E,EF∥CD,交PD于点F (Ⅰ)证明:平面ADE⊥平面PBC
(Ⅱ)求二面角D﹣AE﹣F的余弦值.
【答案】证明:(Ⅰ)∵PD⊥平面ABCD,∴PD⊥AD, ∵AD⊥DC,∴AD⊥平面PDC,∴AD⊥PC,
∵AE⊥PC,∴PC⊥平面ADE,
∵PC平面PBC,∴平面ADE⊥平面PBC.
解:(Ⅱ)设AB=1,则PD= ,PC=PA=2,
由(Ⅰ)知PC⊥平面ADE,
∴DE⊥PC,CE= ,PE= ,
以DA,DC,DP为x,y,z轴,建立空间直角坐标系,
则D(0,0,0),A(1,0,0),C(0,1,0),B(1,1,0),P(0,0, ),
E(0, , ),F(0,0, ),
设平面AEF的法向量为 =(x,y,z),
则 ,取x= ,得 =( ),
∵PC⊥平面ADE,∴平面ADE的一个法向量是 =(0,1,﹣ ),
设二面角D﹣AE﹣F的平面角为θ,
cosθ= = ,
∴二面角D﹣AE﹣F的余弦值为 .
【解析】(Ⅰ)推导出PD⊥AD,AD⊥PC,AE⊥PC,从而PC⊥平面ADE,由此能证明平面ADE⊥平面PBC.(Ⅱ)以DA,DC,DP为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角D﹣AE﹣F的余弦值.
【考点精析】认真审题,首先需要了解平面与平面垂直的判定(一个平面过另一个平面的垂线,则这两个平面垂直).
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD 中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD 都是边长为2的等边三角形,E 是BC的中点.
(Ⅰ)证明:平面AE∥平面 PCD;
(Ⅱ)求PAB与平面 PCD 所成二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ωx+ )的图象与x轴交点的横坐标,依次构成一个公差为 的等差数列,把函数f(x)的图象沿x轴向左平移 个单位,得到函数g(x)的图象,则( )
A.g(x)是奇函数
B.g(x)的图象关于直线x=﹣ 对称
C.g(x)在[ , ]上的增函数
D.当x∈[ , ]时,g(x)的值域是[﹣2,1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市拟定2016年城市建设A,B,C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对A,B,C三项重点工程竞标成功的概率分别为a,b, (a>b),已知三项工程都竞标成功的概率为 ,至少有一项工程竞标成功的概率为 .
(1)求a与b的值;
(2)公司准备对该公司参加A,B,C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣m|(m>0),g(x)=2f(x)﹣f(x+m),g(x)的最小值为﹣1. (Ⅰ)求m的值;
(Ⅱ)若|a|<m,|b|<m,且a≠0.求证:f(ab)>|a|f( ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国唐代诗人王维诗云:“明月松间照,清泉石上流”,这里明月和清泉,都是自然景物,没有变,形容词“明”对“清”,名词“月”对“泉”,词性不变,其余各词均如此.变化中的不变性质,在文学和数学中都广泛存在.比如我们利用几何画板软件作出抛物线C:x2=y的图象(如图),过交点F作直线l交C于A、B两点,过A、B分别作C的切线,两切线交于点P,过点P作x轴的垂线交C于点N,拖动点B在C上运动,会发现 是一个定值,该定值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线C: =1,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ﹣2sinθ)=6.
(Ⅰ)写出直线l的直角坐标方程和曲线C的参数方程;
(Ⅱ)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设m,n(3≤m≤n)是正整数,数列Am:a1 , a2 , …,am , 其中ai(1≤i≤m)是集合{1,2,3,…,n}中互不相同的元素.若数列Am满足:只要存在i,j(1≤i<j≤m)使ai+aj≤n,总存在k(1≤k≤m)有ai+aj=ak , 则称数列Am是“好数列”. (Ⅰ)当m=6,n=100时,
(ⅰ)若数列A6:11,78,x,y,97,90是一个“好数列”,试写出x,y的值,并判断数列:11,78,90,x,97,y是否是一个“好数列”?
(ⅱ)若数列A6:11,78,a,b,c,d是“好数列”,且a<b<c<d,求a,b,c,d共有多少种不同的取值?
(Ⅱ)若数列Am是“好数列”,且m是偶数,证明: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com